INTONATION ON BORNHOLM - BETWEEN DANISH AND SWEDISH

NINA GRØNNUM THORSEN

Acoustic investigations of seven speakers on the island of Bornholm and two speakers from Copenhagen, Malmö and Stockholm, respectively, have proved Bornholm to be an interesting compound, prosodically, between Standard Danish and Swedish. A prosodic continuum can be established from Standard Danish, via Skania, over Bornholm, to Standard Swedish. The parameters investigated are (1) manifestation of sentence accent, (2) manifestation of sentence intonation, (3) alignment of fundamental frequency with syllables and segments at the level of the prosodic stress group, and (4) final lengthening. One particularly interesting implication of the results is the division, both according to their function and their form, of sentence accents into (1) prosodically or syntactically determined final default accents and (2) contextually or pragmatically determined focal accents. Default accents are non-existent in Standard Danish and Skanian, optional in Bornholm and obligatory in Stockholm. Focal accents are non-existent in Standard Danish, optional - but rather rare - in Skanian, optional - but rather frequent - in Bornholm and obligatory in Stockholm.

I. INTRODUCTION

The research presented here is part of a larger project which entails similar investigations in three other Danish areas (provincial towns), which in its turn is part of a five-year project, commenced in 1986, engaging numerous researchers, funded by the Research Council of the Humanities, called 'Spoken Danish in its varieties'.
The island of Bornholm is situated just off the Skanian south coast, closer, geographically, to Sweden than to Denmark. Also, the language spoken on the island forms a whole with the rest of the East Danish, or Skanian, dialects, cf. Areskoug (1957, 29-35). It is not unreasonable to expect that its prosody will reveal at least some features that are related to the prosodic systems of both Danish and Swedish.

A number of questions raise themselves from a background of what is known to-day about Standard Danish, Skanian, and Standard Swedish:1,2 1) Does Bornholm have a sentence accent? (Danish does not, Swedish does, and in Skanian it is said to be optional). 2) Does sentence intonation get signalled globally throughout the utterance (as in Danish) or locally (finally - as in Swedish)? 3) How do tonal patterns behave under variations in duration? (In Danish, the fundamental frequency (Fo) patterns associated with the prosodic stress group is truncated when the stress group is shortened; in Swedish, at least under certain conditions, the tonal pattern is compressed in time, i.e. its movements are quicker and steeper.) (4) Does Bornholm have lengthening of syllables and segments before prosodic boundaries, e.g. sentence boundaries? (In Danish it is slight, in Swedish it is considerable.) Finally, Bornholm differs from Danish in not having stød3, but nor does it have tonal word accents like Swedish. Evidence for this fact should be apparent throughout the material presented here.

I should point out at the outset that I have not intended to investigate the dialects proper in any of the areas I have visited, but rather the present-day regional standard language of the respective provincial towns. This language may be characterized as Standard Danish on, e.g., a Bornholm substratum. Accordingly, the material has been presented to the speakers in standard orthography and it adheres to the morphology and syntax of the standard language. The only adjustments to the town in question have been semantic, in the names of cities to be travelled to, objects to be sold or bought, etc., so that the speakers might feel that they were talking about items familiar to them. The aspect of speech which presumably suffers least, however, from the transition from dialect to regional standard language is the prosody. And prosody is also the main reason why speakers from different parts of the country can be located geographically, even though they conform to the standard norm in all, or most, other respects.

Secondly, I am fully aware of the limitations imposed on an investigation which deals with highly monitored speech read into a microphone, in terms of loss of spontaneity and naturalness. However, the procedure can be defended on two grounds. One, it enables you to isolate certain aspects of speech, while keeping everything else constant, and thus be sure that the description of, say, the relation between stress and Fo is not fouled up by interference from, say, sentence accent or junctures. Two, you may reasonably expect that the intonational structures thus disclosed will also appear in spon-
taneous speech, that they are the neutral minimum upon which a speaker operates in less rigid semantic and pragmatic circumstances.

The investigation is meant to be only exploratory. Hopefully, the material recorded and analysed will enable me to point to those areas with which it will be most rewarding to carry on in the future.

II. PROCEDURES

A. THE BORNHOLM RECORDINGS

1. Material

(1) To look at the realization of sentence accent, if it is manifest at all, three sentences were made up, where the same word occurs as the first, middle and last stressed word, respectively (the stressed vowels are indicated with acute accents here and intended sentence accents with plus symbols):

Kåmma ståmmor fra Svåneke. (Kamma comes from Svanеke.)
Ånders og Kåmma skal til Såndvig. (Anders and Kamma are going to Sandvig.)
Törbens søster hedder Kåmma. (Torben's sister is called Kamma.)

These utterances are presented in isolation, i.e. without any context at all, as well as in two different contexts, designed to evoke a sentence accent on Kamma and on some other word in the utterance, respectively. These contexts took the form of questions to which the sentences above were the answer.

Ved du hvor Kamma er født? (Do you know where Kamma was born?)
Kåmma ståmmor fra Svåneke.
Hvem af dem er født i Svåneke? (Who among them was born in Svåneke?)
Kåmma ståmmor fra Svåneke.
Hvor skal de unge holde ferie? (Where are the children going for holidays?)
Ånders og Kåmma skal til Såndvig.
Hvem skal til Sandvig foruden (Who, besides Anders, is going to Sandvig?)
Ånders og Kåmma skal til Såndvig.
Hvad hedder Törbens søster? (What is Torben's sister's name?)
Törbens søster hedder Kåmma.
Hvem har en søster der hedder (Who has a sister called Kamma?)
Kåmma?
Törbens søster hedder Kåmma.
The distinction between sentence accent and emphasis for contrast may not always be clear-cut semantically or pragmatically in spontaneous speech. There will be many instances where a prominence is open to both interpretations. But in a read material of this kind it ought to be possible to elicit either one or the other (or both, of course). Thus, the question 'Ved du hvor Kamma er født?' focalizes on Kamma's birthplace, but does not contrast it with other possible places of birth as, e.g., the question 'Er Kamma født i Sandvig eller i Svanekø?' would have done (Was Kamma born in Sandvig or in Svanekø?).

Sentence accent and emphasis for contrast may have different phonetic manifestations, as is evident in German data published by Bannert (1985): A sentence accent may be preceded by accented syllables (stressed syllables associated with an Fo excursion), but no such syllables may follow a sentence accent, so stressed syllables after a sentence accent steer a smooth, undeflected course to the end of the utterance. Bannert (1985) notes that in his material, emphasis for contrast is associated with a larger Fo movement on the stressed syllable of the contrasted item, and it appears from his figures that there is a further difference between sentence accent and contrast: the Fo movements preceding the contrasted syllable are also partially suppressed or completely deleted, so the only clear Fo excursion is the one associated with the contrast. This is also how emphasis for contrast is manifested in Standard Danish, cf. Thorsen (1980b). - It would have been very interesting to see whether a similar difference exists in Bornholm (to the extent that a sentence accent is manifested at all). However, I did not dare include the necessary dialogue material, for fear that speakers would - in the course of reading - get confused about the two types (sentence accent and contrast) and mix them up.

The nine sentences above will also allow me to look at the relation between stress and Fo as well as the realization of terminal declarative intonation.

(2) To further illustrate sentence intonation phenomena, a fairly long declarative utterance was made up:

Kófoed og Thórsen skal med rute-bilen fra Gúdhjæm til Snøgebæk klokken fire på tirsdag. (Kofød and Thorsen are taking the bus from Gudhjem for Snøgebæk at four o'clock on Tuesday.)

ds well as a dialogue with a question word and a one-stress echo-question:

Hvor långt er der fra Sándvig til Svanekø? (How far is it from Sandvig to Svanekø?)
Til Svanekø? - Der er cirka 30 kilometer. To Svanekø? - It is about 30 kilometres.)
(3) Two sentences occur which have (a) one stress group with a fairly large number of post-tonic syllables, and (b) a polysyllabic word with stress on its last syllable, respectively (this last to certify that word boundaries leave no trace in Fo - as it does not in Danish, Skanian or Swedish, cf. Thorsen 1980a, 1982, 1984, Bruce 1977 and Touati 1987):

De súdste sildefiskere må snárt lægge op. (The last of the herring fishermen will soon have to lay up their ships.)

Turisterne købte keramik for tó millioner króner. (The tourists bought two million crowns worth of ceramics.)

To look in more detail at the coordination of Fo and segments, five utterances were constructed which contain a stress group (underlined here) whose voiced part grows progressively shorter, from top to bottom:

De fik kännerne frém til nýtår. (They got out the sleighs for New Year's.)

Hun fik känden fyldt til kanten. She had the jugs filled to the brim.

Hun fik känden fyldt med melk. (She had the jug filled with milk.)

Koldt vánd slúkker tórsten. Cold water quenches your thirst.

En grá kát krádser. A grey cat scratches.)

The last two utterances are ill-considered on my part. I neglected the fact that here the stress group under scrutiny is not the first one in the sentence. And to the extent that an initial juncture is manifest - which will make the first stress group differ from succeeding ones - the five underlined sequences are not immediately comparable.

(4) Turisterne forøger befôlkningstallet om sømmeren. (The tourists increase the population during the summer.)

Mânge bornholmere lever af turisterne. Many Bornholmians live off the tourists.

These two utterances should disclose a final lengthening, granted that the second one did not receive a sentence accent on the last word, which could then be made responsible for triggering longer segments and syllables in 'risterne.' I presumed that if a sentence accent occurred, it would hit 'lever af'. Further, the 'Kamma'-utterances can of course also be used to measure duration of initial and final 'Kamma's, with and without sentence accent.

The total of twenty utterances/dialogues were typed out on library index cards in three different randomizations, twice, numbered consecutively from 1 to 120.
Two speakers from Stockholm recorded this material, BjH who is a linguist (52 years, male) and ER who is a logopedist (38 years, female). BjH was recorded in the silent studio at the Department of Linguistics, Stockholm University, with a Brüel & Kjær 4165 condenser microphone, Revox Studer B67 recorder, Scotch 208 Audio Tape, at 7½ ips. ER was recorded in a quiet booth at the Department of Speech Communication and Music Acoustics, Royal Institute of Technology, Stockholm, with a dynamic Sennheiser ND211N microphone, Revox A77 recorder, Scotch Audio 208 Tape, at 7½ ips. MD, a 28 years old student of linguistics and phonetics from Malmö (male) recorded the material in our quasi-damped room, with a Sennheiser MD21 condenser microphone, Revox A700 tape recorder, Agfa PEM369 tape, at 7½ ips. HD, a 33 years old student of linguistics from Malmö (male) was recorded in a quasi-damped room at the Department of Linguistics and Phonetics, Lund University, with a dynamic Sennheiser ND211 microphone, Revox Studer B62-2 recorder, Agfa PEM369 tape, at 7½ ips. The Swedish speakers recorded one pile of 60 cards twice.

C. THE COPENHAGEN RECORDINGS

A colleague (NRP, 45 years, male) and the author (NT, 42 years) recorded the material designed for southern Zealand, which means that place names, etc., have been adjusted. Otherwise, the recordings were done under the same conditions as MD (above), but we only recorded the 60 cards once. I have looked at data from NRP and myself often enough to judge both from hearing and vision whether a given item is typical or not, and there were no new elements in this material compared with previously analysed data from Copenhagen.

III. RESULTS

A. SENTENCE ACCENT

1. Auditory evaluation

The presence (or not) and location of sentence accents (SA) were ascertained while listening to the tapes and providing the minograms with identification and proper text. I am the sole auditory judge in this case, but although certain shady cases might receive another verdict from other listeners, I have no doubt that the main trends will remain unchanged.

You will see from Table I that Bornholm speakers produced the isolated sentences without any extra perceived prominence anywhere in the utterances in 64% of the cases. Disregarding the insignificantly small proportions of non-invited initial, medial and double accents (2% each), we can say that the rest of the isolated utterances (30%) received a final SA. A contextually invited initial SA is rarely missed (90% were produced, plus 4% with a final SA as well, i.e. double accents). The majority of finally invited ones also get realized (69% plus
a logarithmic one, with zero semitones equal to the lowest Fo value observed in the tracings of the given speaker, which meant that measurements were performed in semitones with an accuracy of ± 0.25 semitones for males and females alike.

Generally, Fo has been measured in a manner which will allow me in the average tracings to recreate confidentially the approximate course of Fo of the original ones. Thus, every onset and offset of voicing, as well as every turning point has been measured. And further points have been inserted to render falling and rising movements which were not linear but rather parabolic or asymptotic. Needless to say, items that are to be averaged must have the same number of measuring points in them, located at corresponding points across the tracings. The distance in time of each Fo-measuring point from the first one in each sentence/utterance was likewise measured. Averages over 6 (sometimes fewer) readings of each item were calculated, and average tracings drawn.

B. THE SWEDISH RECORDINGS

The sentences were translated into Swedish, as close-copy as possible:

(Vet du var Kamma är född?
Vem av dom är född i Svanek?)
Kamma kommer från Svanek.
(Var skall ungdomarna fira semester?
Vem skall till Sandvik förutom Anders?)
Anders och Kamma skall till Sandvik.
(Vad heter Torbens syster?
Vem har en syster som heter Kamma?)
Torbens syster heter Kamma.
Kofot och Torsson skall med bussen från Gudhem till Snogebäck klockan fyra på tisdag.
Hur långt är det från Sandvik till Svanek?
Till Svanek? - Det är cirka 3 mil.
De sista sillfiskarna får snart sluta.
Turisterna köper keramik för två miljoner kronor.
De tog fram kamrorna till nyår./ De tog kamrorna fram till nyår.

De fick kannorna fyllda till kanten.
Hon fick kannan full med mjölk.
Kall mjölk släcker törsten.
En grå katt krafsar.
Turisterna fördeblar befolkningen på sommaren.
Många bornholmare lever på turisterna.
2. Speakers and recordings

Speakers were two women (HC and RK) and five men (IB, CA, HP, KP and JT) ranging between 37 and 55 years of age. Four of them are from Rønne, the largest town, situated in the south-west of Bornholm (CA, HC, IB, KP), two of them are from Nexø (on the east coast), and one (JT) from Gudhjem (on the north coast).
- There seems to be a sharp distinction between the language spoken in Rønne and on the rest of the island, to the extent that non-Rønne speakers claim that in Rønne people do not even speak proper Bornholm. I thought it possible that this might also have prosodic reasons, which is why speakers were recorded from Nexø and Gudhjem, respectively.

The speakers were recorded in two sessions in the studio of a local radio station at Akirkeby, with a Neumann U77 condenser microphone, Agfa PEM369 tape, a Revox A77 tape recorder, at 7½ ips.

There is a rather strong consciousness and a good deal of healthy pride among Bornholm speakers in speaking Bornholm. It was therefore not at all difficult to persuade the speakers that it was not their best imitation of Standard Danish of the capital I wanted on the tapes, but rather the closest approximation they could muster to the language they would speak among themselves, conforming, however, to standard morphology and syntax. They took a gratifying interest in the investigation, without being told specifically what the center of interest was for me, and they did not object either to having to read aloud from cards or to the somewhat absurd utterances, nor to having to read the material a total of six times. - During the instruction session they made lively comments to the sentences and discussed among themselves how such and such a word would be pronounced. This led to corrections on the spot of one or two words and to an agreement that minor morphological/syntactic adjustments away from the standard language were acceptable if the speakers could produce them spontaneously from the standard text. Due to an initial oversight, the person being recorded was heard over the loudspeakers in the control room. I was uncomfortable about this, but when I learnt that the only comments speakers ever made about each other's pronunciation concerned segments, never stress or intonation, I was actually quite content, granted that deviating prosody would have been much more prone to comments about 'funny accent' or the like.

3. Registration and measurements

The tapes were processed by hardware intensity and Fo meters (F-J Electronics) and registered on a mingograph (Eliema 800) at a paper speed of 100 mm/s. By adjustment of the Fo meter's zero-line to the lower limit of the subject's voice range and full exploitation of the record space (about 80 mm) of the mingograph galvanometer, a measuring accuracy of 1 Hz for the males and 2 Hz for the females is attained. However, on the measuring rods, the linear frequency scale was transformed into
Table I

<table>
<thead>
<tr>
<th>Sentences realized</th>
<th>Contextually invited sentence accents</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>None</td>
</tr>
<tr>
<td>Without SA</td>
<td>64%</td>
</tr>
<tr>
<td>Initial SA</td>
<td>2%</td>
</tr>
<tr>
<td>Medial SA</td>
<td>2%</td>
</tr>
<tr>
<td>Final SA</td>
<td>30%</td>
</tr>
<tr>
<td>Double SA</td>
<td>2%</td>
</tr>
</tbody>
</table>

9% with double accents). The rest (21%) are lacking an SA. Only about half (57%) of the invited medial SA's actually get realized, the rest are missing (41%). There was only one sentence which invited a medial SA: 'Hvem skal til Sandvig for uden Anders? Anders og Kamma skal til Såndvig.' It is not obvious to me that there is any semantic/pragmatic reason for the somewhat aberrant behaviour of this utterance, and it remains to be seen whether medial (or maybe rather: non-marginal) position is less prone to receive sentence accents generally, than initial and final ones. Speakers were not equally likely to produce SA's (whether invited or not). In a total of 54 Kamma-utterances (3 x 3 x 6) they produced perceptible sentence accents as follows: IB 49, HP 41, HC 40, KP and CA 31, JT 29 and RK 20.

It appears from the present material that sentence accent as a phenomenon exists in Bornholm but it is not obligatory, i.e. utterances may be produced without one. That is more likely to happen if the utterance is produced in isolation, but it may happen also where the theme/rheme distribution is quite clear from the context. (Note, though, that speakers rarely omit initial SA's.) When an isolated utterance nevertheless gets one, it hits the final lexical item. This gives substance to a common observation from English and Swedish, that every utterance must have at least one (nuclear) accent, and if nothing else is specified by the context, this accent will fall on the last lexical word.
The situation is different in Stockholm, on the one hand, and in Copenhagen and Skania, on the other:

Table II

Number of sentence accents produced by two Stockholm speakers in percentage of the possible maximum, determined a priori by the context (i.e. columns should add up to one hundred).

<table>
<thead>
<tr>
<th></th>
<th>Contextually invited sentence accents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sentences realized</td>
<td>None</td>
</tr>
<tr>
<td>Without SA</td>
<td>6%</td>
</tr>
<tr>
<td>Initial SA</td>
<td></td>
</tr>
<tr>
<td>Medial SA</td>
<td></td>
</tr>
<tr>
<td>Final SA</td>
<td>75%</td>
</tr>
<tr>
<td>Double SA</td>
<td>19%</td>
</tr>
</tbody>
</table>

Hardly any utterance is produced without an SA, and that can happen only to an isolated one (6%). As in Bornholm, an isolated sentence gets its SA finally (75%) if it is not supplied with a double (i.e. initial and final) sentence accent (19%). Double SA's can also occur where only a final one is invited (6%). Here is a case of misplacement: an invited initial accent gets located medially in 12% of the cases. The utterance responsible is 'Vem har en sysster som heter Kamma? Törben syster heter Kamma.' by speaker ER (three items). I tend to believe that the tediousness of the reading task resulted in a certain lack of attention which is responsible for the misplacement. Double accents and a misplacement apart, it is roughly true that every utterance is obligatorily supplied with a sentence accent, which gets located finally if the context does not specify otherwise. This is entirely in agreement with previous research on Stockholm Swedish, cf. Bruce (1977).

NRP (Copenhagen) did not produce a single instance which could lay any claim to being a sentence accent. The same utterances, produced in isolation and in context, are perceptually indistinguishable, as far as their origin is concerned. The author is the other speaker, and given this status, I am probably not a trustworthy subject for this part of the material, which plays heavily on a "naïve" speaker's interpretation. With this reservation, NT produced no final prominences in any
context. Utterances in contexts which invited initial and medial ones do not sound as if the rheme is especially prominent, but a certain down-grading of the preceding stress (medial rheme) and succeeding stress (initial rheme), respectively, can be discerned, which is probably sufficient for identifying the original context correctly, but the phenomenon has so little in common perceptually (and acoustically) with the sentence accents in Bornholm and Stockholm, that I hesitate to label it under this heading.

One of the two Malmö speakers, MD, resembles Copenhagen speaker NRP, except that all of his Kamma-utterances came out with a slightly more prominent second (middle) stressed word, relative to the initial and final ones, irrespective of utterance and context. The other Malmö speaker, HD, produced some unmistakable sentence accents in the appropriate contexts, though not invariably, but not in the isolated sentences, cf. table III. Note that, like the Bornholm speakers, HD produced fewer SA's in medial than in initial and final positions.

Table III

Number of sentence accents produced by a Malmö speaker in percentage of the possible maximum, determined a priori by the context (i.e. columns should add up to one hundred).

<table>
<thead>
<tr>
<th>Contextually invited sentence accents</th>
<th>None</th>
<th>Initially medially finally</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sentences realized Without SA</td>
<td>100%</td>
<td>59% 83% 67%</td>
</tr>
<tr>
<td>Initial SA</td>
<td></td>
<td>41%</td>
</tr>
<tr>
<td>Medial SA</td>
<td></td>
<td>17%</td>
</tr>
<tr>
<td>Final SA</td>
<td></td>
<td>33%</td>
</tr>
</tbody>
</table>

It appears, then, that sentence accent exists in Skanian but not as a default accent in isolated utterances and it is not obligatory in context, which is in agreement with observations by Gösta Bruce (personal communication) and Touati (1987).

Evidently, the material ought to be subjected to perceptual tests, where Bornholm, Stockholm, and Malmö listeners are given a choice between the various contexts to allocate spliced-out Kamma-utterances to. This is, however, a rather large enterprise which will have to be postponed, for the time being.
2. Fundamental frequency

The F0 traces should establish the acoustic foundation for my auditory impressions.

(a) Bornholm

The degree of uniformity across speakers is far from impressive, cf. figures 1-7, and I cannot organise the seven speakers consistently into sub-groups. This is not very satisfactory for whomever is trying to produce a clear and simple description of the manifestation of sentence accent in Bornholm, or for those who want to synthesize or automatically recognize Bornholm speech. However, this lack of uniformity cannot be explained away, and it is a good demonstration of the variability in speech production, which has come into the focus of phonetic research in later years.

There are two obvious ways to go about the description. I could outline the main trends as they appear across speakers, and note how and where individuals differ from those trends. I have chosen the other route, namely to account for one speaker first, and then note - in an annotated questionnaire-type table - how others follow or deviate from that pattern. HP is the one selected, for three reasons. Firstly his F0 range is large and he signals the difference between the different

Figures 1-7

Average fundamental frequency tracings (logarithmic display) by seven Bornholm speakers of three utterances with different sentence accent locations. Speakers are identified at the top left of each figure, as is the frequency value which is the basis for the conversion to semitones. The number of items behind each average tracing is given at the top right of each subpart of the figures. Utterances with no perceived sentence accent are traced in full lines, utterances with perceived initial sentence accent in dotted/broken lines, utterances with perceived medial sentence accents in dotted lines, and utterances with perceived final sentence accents in broken lines. Speakers HP, IB and JT produced such perceived final accents partly when provoked by the textual context (heavier broken lines), partly in isolated utterances (thinner broken lines). Note that HP (figure 1, bottom) produced 'ter hedder' with unvoiced [h] in the full and broken line editions, creating 6 bits of tracing, as opposed to the five bits in the dotted/broken line, where 'ter hedder' was produced with unbroken voicing. JT (figure 4, bottom) consistently produced 'ter hedder' in two bits. Note also that CA (figure 7) produced 'Kamma stammer fra Svaneke' (top) with secondary stress on 'stammer'.
Figure 1
Figure 2
Figure 4
Figure 5
Figure 6
CA. 0 semilones = 92 Hz

Kamma skamer fra Svanke

Anders og Kamma skal til Sandvig

Torbens søller hedder Kamma.

Figure 7
editions of each utterance generously and explicitly. Secondly, he produced a large number of utterances with sentence accent (76% of the possible total). Thirdly, he is (together with HC, CA and IB) judged to have attained a high degree of naturalness and authenticity (i.e. approaching a spontaneous speech style) by a colleague who is thoroughly familiar with present-day Bornholm speech (Mogens Baumann Larsen, Aalborg, who has been kind enough to listen to and comment the first 20 items by each speaker).

Some preliminary remarks about the figures are called for, to single out minor deviations which I will assume have no bearing upon the issues at hand, and which I shall disregard in the description to follow. The numerous obstruent consonants at the onsets and offsets of syllables have a marked effect on F0 with some speakers, but not with others. It suffices to look at the full lines in the figures (the utterances with no perceived sentence accent). HP (figure 1) has a small and brief fall in F0 finally in initial 'Kamma', in initial 'Anders', in medial 'Kamma', in initial 'Torbens' and in medial 'søster', and likewise in the unstressed words 'fra, og, skal, til, hedder'. HC (figure 2) exhibits none of these final drops, except in 'hedder', nor does CA (figure 4) except in initial 'Torbens'. JT (figure 5) resembles HP; and IB (figure 3), RK (figure 6) and KP (figure 7) are in between, i.e. if and when Fo drops before or after an unvoiced obstruent, the effect is less than with HP and JT.

Intrinsic F0 differences between different vowel qualities do not appear to have had a uniform effect across all speakers. Although I have tried to keep all vowels low, to minimize this influence, 'Svaneké' has a high vowel in its first post-tonic, [i], and with HC (figure 2) and JT (figure 5) that seems to have created an upwards deviation from what other speakers (HP, CA, RK) perform as a more or less straight fall in 'Svane-'. Similar remarks about segmental effects pertain, mutatis mutandis, to the utterances with sentence accent.

The reader might reasonably protest that I should have compensated for these effects, erased them in the tracings. I have chosen not to, for two reasons. One, not enough is known about the magnitude, the quantification, of coarticulatory variations in F0 at segment boundaries. Two, it is interesting enough, per se, to observe the rather impressive inter speaker variability in this area, to merit its preservation in the figures. — In the final schematized model of the Bornholm speakers, segmental effects have been left out, of course.

Neutral, no perceived accent edition (figure 1, top, mid, bottom, full line): Common to the three utterances are pre-final stress groups at a fairly high F0 level, exhibiting hardly any declension or downdrift. The final stress group (in these terminal declaratives) is steeply falling, covering a range of about an octave. Note that this fall, extensive as it is, did not trigger the perception of any particular prominence, presumably because it is ascribed to the terminal declarative function of the utterance.
The two pre-final stress groups are of the low (falling)-high (rising) type, whereas the final one reverses the pattern into a high-low type. (I shall return to this point in section III. C.) Note that the rise stretches over all of the post-tonics, i.e. its peak is reached only at the end of the stress group, which means that the slope of the rise varies, compare, e.g., 'Törbens' to 'søster hedder' at the bottom of figure 1. See also further below.

Final perceived sentence accent (figure 1, top, mid, bottom, broken lines): HP (and IB and JT) produced enough isolated sentences with a perceived final sentence accent to justify their inclusion in the figures. They are drawn with the same type of line, only thinner, as the examples with final sentence accent invited by the context. Final accent triggered by the context (thicker broken lines): these three utterances deviate from the neutral ones in that the final fall is larger and quicker/steeper, beginning as it does after a rise to a frequency near the top of the speaker's range. The high onset of the final fall is accentuated by the comparatively low preceding unstressed syllable, which is another difference from the neutral edition: the pre-accentual stress group gets its tail end twisted downwards after a brief and modest rise from its stressed syllable. (I shall return to this point in section III.C.) The first stress group is roughly unaffected by the sentence accent at the end. The final, provoked sentence accent shortens the whole utterance with initial and final, but not medial, 'Kamma'. This is where the isolated utterance with (final) sentence accent differs (thinner broken lines): it is longer than the utterance with a preceding context (except where medial 'Kamma' is concerned). There are several issues involved here, and the durational data are not straightforward to interpret. Duration will be treated separately below in section 3.

Initial perceived sentence accent (figure 1, top and bottom, dotted/broken lines): The initial stress group performs a more ample movement, with a reversed pattern (compared with the neutral), i.e. a high (rising)-low (falling) one. The rest of the utterance performs a smooth and asymptotic, continuous fall to the low end, i.e. stress group patterns are suppressed or deleted after the sentence accent. (The minor deflections from a completely smooth downward course seen in figure 1 can be ascribed to segmental effects.) Thus, the terminal fall, which was a very local, final phenomenon in the neutral and final sentence accent editions is distributed over all of the non-initial part of the utterance with initial sentence accent.

Medial perceived sentence accent (figure 1, mid, dotted line): The most predominant feature is a considerable fall in the stressed syllable, i.e. a high-low pattern, but the second and third post-tonics actually do rise slightly (and probably more than can be attributed to segmental effects) from the low offset of the fall in the stressed plus post-tonic syllables. The other speakers conform better, however, to the pattern set by initial SA's: that Fo steers a smooth downward course after
the sentence accent, and I shall assume that that is the per-
tinent description, generally. The initial stress group, again,
bears no witness of what follows, and the onset of the fall of
the medial sentence accent is furthermore coincident in fre-
quency with the onset of the medial stress group in the neutral
and final-sentence-accent editions.

To simplify and sum up (figure 1): The neutral edition of
these short terminal declarative utterances has high and level
(relative to each other) low-high stress groups, preceding a
final high-low stress group which performs a considerable fall.
A final sentence accent demonstrates a larger and quicker fall-
ing movement, which is put into relief by the falling tail of
the preceding stress group. It has no effect on earlier parts
of the utterance. Initial and medial sentence accents like-
wise involve a larger and reversed (i.e. high-low) stress group
pattern and a suppression of succeeding ones, which fall gently
to the end of the utterance.

The accent-less utterances are treated more or less uniformly
by all speakers according to figures 2-7 and table IV. There
is also a near-unanimity about constant utterance onsets (in
these utterances which are all of approximately the same
length) and offsets. KP's and IB's final stress groups deviate
from the rest in final 'Sveiske', with their fall-rise-fall,
as opposed to the nearly clean fall in the final stress groups
in the rest of the material. Whether this deviance is to be
seen as an attempt at a preservation of the otherwise prevalent
fall-rise with a final fall added for terminal declarative
purposes (a pattern which is truncated (from the beginning)
when the stress group is shorter, as in 'Sandvig, Kamma') is
not possible to tell, given the scarcity of the material. -
Total range spanned commonly exceeds 15 semitones, but may be
more modest (IB and CA).

Apart from CA, who will be treated below, and apart also from
the ripple caused by exceptions to a trend and by ambiguity
in the acoustic signal, it seems that there are two ways to
go about putting the sentence accent into relief: HP, IB, JT,
and RK lower the offset of the preceding stress group pattern
by twisting its tail downwards at the end, and upstep the on-
set of the accentuated item (relative to the neutral utterance)
thus creating a sharp jump upwards to the beginning of the
high and extensive accent fall. HC and KP (and CA) do the
opposite: by tilting the global intonation contour into a
rising shape leading up to the sentence accent (i.e. by lower-
ing the initial stress group(s)), and by maintaining the rise
(or even increasing its peak) in the immediately preceding
pattern, the sentence accent fall - even though of comparative-
ly modest extent - is made prominent. Only two speakers make
consistent use of the possibility to reverse the low-high
stress group pattern in non-final sentence accents (HP and IB,
see further section III.C.).
Table IV - see the text

<table>
<thead>
<tr>
<th>Utterances without sentence accent</th>
<th>HP</th>
<th>HC</th>
<th>JT</th>
<th>RK</th>
<th>KP</th>
<th>IB</th>
<th>CA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-final stress groups are Low-High</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>but Svancke has an added High-Low</td>
<td>but Svancke has an added High-Low</td>
</tr>
<tr>
<td>Final stress groups are High-Low</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>but not with final Kamma</td>
<td>+</td>
</tr>
<tr>
<td>Terminal declarative sentence intonation is signalled locally, at the end, i.e. the contour is high and level until the final drop or fall in frequency</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>(+)</td>
<td>(+)</td>
</tr>
<tr>
<td>All utterances end equally low (within one or two semitones)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>but only with final Kamma</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>All utterances begin equally high (within one or two semitones)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>(+)</td>
<td>(+)</td>
<td>+</td>
</tr>
<tr>
<td>Total range spanned in semitones</td>
<td>20.2</td>
<td>15.0</td>
<td>19.4</td>
<td>18.5</td>
<td>15.9</td>
<td>10.2</td>
<td>9.6</td>
</tr>
<tr>
<td>Number of utterances produced with SA, in percentage of the possible 54 total</td>
<td>75</td>
<td>74</td>
<td>64</td>
<td>37</td>
<td>57</td>
<td>91</td>
<td>57</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Utterances with sentence accent</th>
<th>HP</th>
<th>HC</th>
<th>JT</th>
<th>RK</th>
<th>KP</th>
<th>IB</th>
<th>CA</th>
</tr>
</thead>
<tbody>
<tr>
<td>The tail of the pre-accentual stress group is twisted downwards</td>
<td>+</td>
<td>but not initially</td>
<td>- only before Sändvig</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>After the SA peak Fo steers a smooth, undeflected downward course through the rest of the utterance</td>
<td>+</td>
<td>but the medial SA preserves a rise</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Stress groups preceding the SA are tilted downwards, relative to the neutral edition</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>(+)</td>
<td>+</td>
<td>+</td>
<td>and their pattern may be reduced/delighted (not with Sändvig)</td>
</tr>
<tr>
<td>Final SA's have an inverted, i.e. High-Low pattern</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>the pattern is Low-High-Low</td>
<td>+</td>
</tr>
<tr>
<td>Non-Final SA's have an inverted, i.e. High-Low pattern</td>
<td>+</td>
<td>-/+</td>
<td>-/+</td>
<td>+</td>
<td>but not unambiguously</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>SA's have a larger Fo movement</td>
<td>+</td>
<td>(only initial Kamma)</td>
<td>+ not initially</td>
<td>+ but not unambiguously</td>
<td>- only with Sändvig</td>
<td>but only finally</td>
<td>-</td>
</tr>
<tr>
<td>SA's have quicker Fo movements</td>
<td>+</td>
<td>+ (slightly)</td>
<td>+ but not initially</td>
<td>+ but not unambiguously</td>
<td>+ but not unambiguously</td>
<td>especially finally</td>
<td>but not unambiguously</td>
</tr>
<tr>
<td>Utterances with SA are shorter than the neutral edition</td>
<td>+</td>
<td>but not much with Sändvig</td>
<td>considerably + only with Sändvig</td>
<td>+/- only with initial Kamma</td>
<td>unambiguously +/- only with initial Kamma</td>
<td>+/- only with initial Kamma</td>
<td>+</td>
</tr>
</tbody>
</table>
CA (figure 7) stands out from the other speakers, not just with a modest Fo range but particularly where the signalling of sentence accent is concerned. He produces none of the special effects, except that the intonation contour leading up to the sentence accent is tilted, and the accent itself may have a somewhat quicker movement. His sentence accents all sounded decidedly weak, i.e. not very prominent, although identifiable. With some utterances matters were helped by a brief pause after the accentuated item.

Figure 8 summarizes the results graphically. It shows how a difference in stress group length influences the slope of the rise from the low turning-point, and also the two different ways to make the sentence accent stand out from the surroundings. It would have been interesting to know what governs these two different behaviours - whether they express different "readings", i.e. whether listeners would attribute them to different pragmatic contexts, or whether they really are equivalent options for speakers to choose from. As mentioned above, the perceptual tests that would clarify this issue are a large-scale affair, and will have to await future research.

(b) Stockholm

This section will mainly concern those aspects which are pertinent to a comparison with the Bornholm material. Readers are referred to Bruce (1977, 1982), Gårding (1977) and Bruce and Gårding (1976) for a thorough treatment of Swedish word tones and intonation. However, I should point out that I depart from the there established way to account for the difference between the two tonal word accents in Swedish. Figure 9 from Bruce (1977) illustrates his description of the Accent I/II contrast in its canonical form, i.e. when no sentence accent and no terminal juncture interfere: the distinctive feature is the fall in Fo, which is aligned with the pre-stressed syllable in Accent I (invariably) and with the stressed syllable in Accent II (where the exact timing may vary somewhat with position in the utterance). The Accent I fall is somewhat steeper than the Accent II fall. For both word accents the fall is preceded by a rise from the vowel preceding the pre-stress and the stressed vowel, respectively.

Figure 8

Stylized fundamental frequency tracings (logarithmic display) of Bornholm utterances with no perceived sentence accent (full lines) and utterances with contextually provoked perceived final, initial, and medial (top to bottom) sentence accents, based on the data in figures 1-7. Two possible strategies for high-lighting the sentence accents are indicated (broken lines versus dotted/broken lines).
The basic contours of the two word accents. Schematic Fo-contours of accent I (unbroken line) and accent II (broken line) in pre-focal position. (Reproduced from Bruce 1977, Figure 17.)

I do not wish to dispute the general adequacy of this description and the obvious advantage it has for the comparison across Swedish dialects of the manifestation of the Accent I / Accent II difference, but I shall refer to the tonal patterns of the word accents in this material in terms of the Fo movement within the stressed syllable or through the stressed and post-tonic syllable(s). This is partly because Bruce’s (1977) schema does not immediately apply to the utterance initial stressed words in the present material, where no unstressed syllables precede and where the syllable initial consonant is unvoiced (or lacking), partly in order to bring the significant tonal events within the realm of the prosodic stress group: The prosodic stress group begins at the onset of the stressed vowel and ends at the onset of the next stressed vowel, thus cutting across any intervening word - or higher syntactic - boundaries, see further Thorsen (1980a, 1982, 1984). The relevance of this unit, also for Swedish, is explicitly stated by Bruce (1982, p. 56). Strangert (1983) showed how the prosodic stress group is the unit within which temporal adjustments in Swedish take place.

Figures 10 and 11

Average fundamental frequency tracings (logarithmic display) by two Stockholm speakers of three utterances with different sentence accent locations. Final sentence accents invited by the textual context are drawn in heavier broken lines, final sentence accents produced in utterances in isolation are drawn in thinner broken lines. The word accents are identified in Arabic numerals above the stressed vowels in the sentences. See further the legend to figures 1-7. Note that ER produced 'Kamma kommer från Svaneke' with unstressed 'kommer'.

Figure 10
ER 0 semilones · 428 Hz

semilones

Kemma kommer från Sverige

Anders och Kemma ska till Sandvik

Torbens spår heter Kamma

Figure 11
Accordingly, I shall refer to the Accent I pattern in Stockholm (in this material) as rising(-falling in the post-tonic) and Accent II as falling(-rising in the post-tonic), which is how the stressed (plus post-tonic) syllable(s) appear(s) in, e.g., the first word in each of the three utterances with final SA in figures 10 and 11. This is reminiscent of the way the word accents in Stockholm Swedish were described by scholars previous to Bruce (1977), except that the added/superposed influence of the sentence accent upon the word accent was not separated out by, e.g., Gårding and Lindblad (1973) and Gårding et al. (1974), who had looked at one-word utterances. (Note, incidentally, that just like some words in Danish receive stød by some speakers but not by others, the four Swedish speakers do not agree about the accent on 'Kamma, Svanekê, syster'. This is partly a question of dialect, partly idiolectal. Word accent identification is given above the stressed words in the figures (10-13). Note also that when 'kommer' and 'heter' are de-stressed (as they are with a few exceptions), they carry no autonomous Fo pattern but behave tonally as the tail to the preceding stress group.)

There is only one utterance (two recordings) without any perceived sentence accent ('Kamma kommer från Svanêke' by BjH, figure 10, top, full line). It differs from the corresponding neutral utterance by six of the seven Bornholm speakers, where the pre-final stress groups were high and on a level with each other, preceding an extensive final fall. Here, the fall is evenly distributed over the three stress groups, and none of them has a more extensive Fo movement than the other, resembling the Standard Danish way to render such utterances, cf. figures 14 and 15, (and KP from Bornholm), cf. below. However, two items of one utterance by one speaker is hardly sufficient to conclude anything about intonation where no sentence accent is present, which furthermore seems to be happening only very rarely in Stockholm Swedish.

The isolated utterances which received (final) sentence accent are shown here (thinner broken lines) together with utterances where the context invited one (heavier broken lines). Although they fit the same overall pattern, there are two notable differences: utterances with an invited final accent are shorter than the corresponding isolated ones, by around 10%, see further below. Note that the isolated utterance at the top of ER's figure (11, the thin broken line), had initial and final sentence accent. With BjH there are two instances (top and bottom) where the invited final accent has caused the initial stress group to get its level/movement lowered/diminished, respectively, a trend also noted by Bruce (1982, p. 75). It remains to be seen whether such differences would provoke different answers from listeners asked to provide a context for these utterances.
The possibility of inverting a stress group pattern for highlighting purposes, which seems to be the rule for final sentence accents in Bornholm and an option for pre-final ones, is ruled out in Stockholm (and Malmö) because the identity of the word accents must be preserved.

There are a number of similarities, however, between the Bornholm and the Stockholm utterances: An initial and medial sentence accent suppresses or deletes succeeding Fo movements, and the terminal declarative sentence intonation gets expressed through the fall from the peak of the accent to the end of the utterance. (The utterance final rise, exhibited by ER, is not, I think, a contradiction to this statement. It is characteristic of a certain speech style, which - inter alia - signals an obliging and favourable disposition towards the listener, cf. Bruce (1977, p. 58).) Final sentence accent does not delete or suppress Fo movements in preceding stress groups, although two of BjH's utterances have a certain lowering/diminishing of the first stress group.

The Stockholm word accents maintain their characteristic movements before and in sentence accent position, which is entirely in accordance with Bruce (1977). It is less conspicuously the case in post-accentual position. Bruce (1977) showed that word accents maintain their perceptual identity also post-focally, which I do not wish to dispute, especially since I have not run the necessary perceptual tests on this material. It is possible, also here, to postulate a difference in the manifestation, partly in the post-accentual stressed word itself, partly in its relation to the preceding Fo course. With BjH final 'Kamma' (Accent II) should be compared with final 'Svanek' (Accent I), in the utterances with initial sentence accent (dotted/broken lines). The fall in 'Kamma' is more comprehensive and starts from an onset which is higher than the preceding unstressed syllable, as opposed to the slight fall in 'Svanek' which is preceded by a higher unstressed syllable. With ER, final 'Kamma' after medial sentence accent should be compared with final 'Sandvik', and the same description can be maintained, though it may be somewhat forced. This brings the manifestation on a par with Bruce's (1977) accent description (thus attesting its more general appropriateness), insofar as one could say that the post-SA Accent I words (even though falling themselves) are also preceded by a fall from an unstressed syllable ('early fall'), whereas the (falling) Accent II words constitute the onset of a fall (with a rise from or on a level with the preceding unstressed syllable, 'late fall').

BjH and ER differ in the way they treated the medial, invited sentence accent (figures 10 and 11, mid). ER produced the utterance in two phrases, i.e. her 'Kamma' is phrase-final and (therefore) resembles her utterance final, accented 'Kamma' where the terminal declarative fall is contained within the post-tonic '-ma'. Note, then, that the second phrase ('skall till Sandvik') is produced without any sentence accent. ER
produced three misplaced medial accents in 'Torbens syste-
het Kamma.', and this did not trigger any prosodic phrasing,
but these utterances are curious by their lack of any rise to
signal the sentence accent (compare this with BjH's medial
accent in 'Anders och Kamma skall till Sandvik'). It is, of
course, possible that ER produced ambiguous utterances, or that
I perceive them incorrectly, but I cannot hear any prominence
on 'Torbens' (which was what the context invited), and nor is
'Torbens' as high rising in the dotted as in the dotted/broken
dition. It remains to be seen whether Swedish listeners will
assign a medial rhematic focus to ER's 'syste' in spite of
its lack of any sentence accent manifestation. IF such is the
case, and IF this type of utterance is not very uncommon (but
these are big IFs), then there is room for speculation about
the nature of rhyme or focus (which is not, then, necessarily
signalled through the tonally prominent sentence accent)
versus sentence accent (which does not necessarily signal a
contextually determined rhyme/focus, as it does not in final
position in isolated utterances. I shall return to this ques-
tion below, in section 3.)

A few more points are worthy of notice. ER produced two per-
ceptible sentence accents in isolated 'Kamma kommer från
Svanke.' As opposed to the final one only, invited by the
context. The difference between initial 'Kamma' with and with-
out sentence accent is not considerable, but the fall is steeper
under SA and the rise somewhat higher, and 'Kamma' is longer.
It compares well with the invited initial sentence accent,
though it is lower in the Fo range. As also noted above, BjH
differs in the way he renders the final sentence accent in
isolated versus contextualized utterances: at the top and
bottom of figure 10 it appears that the invited final SA implied
a lowering of initial 'Kamma' and 'Torbens', respectively.
Not so with initial 'Anders', but here the invited sentence
accent at the end performs a more ample movement than the un-
invited one. Together with the trends set by the durational
data (see below), this does inspire further investigations into
a possible dichotomy between syntactic/prosodic sentence ac-
cents, and semantic/pragmatic ones.

According to Bruce (1977) and Bruce and Gärting (1978), the
rise in Accent II words (which caused the postulate in older
descriptions of a double-peaked Accent II versus the single-
peaked Accent I in Stockholm Swedish, cf. Gärting and Lindblad
(1973) and the references therein) is due to the sentence ac-
cent. I cannot entirely agree, since the rise is also clearly
present (although it is not as high) in Accent II words in the
position before a (medial or final) sentence accent. It is
true, however, that in post-SA position what remains is the
fall in the stressed syllable (see BjH's 'syste heter Kamma'
at the bottom of figure 10, and cf. Bruce (1982, p. 61 and
p. 78).) (The final rises with ER are not, as noted above, a
contradiction, occurring as they do in the final part of the
post-tonic vowel (rather than at the offset of the stressed
one), and being generalized also to Accent I words in pre-
pausal position, and to final sentence accents, where they are
tagged on to the terminal declarative fall.) Insofar as the rise in Accent II words is not attributable exclusively to the influence of an SA command after the word accent command, it may not be quite pertinent to state, as Bruce (1979) and Gårding (1978) do, that final SA in Stockholm comes after the word accent, but rather that it reinforces the final, rising, part of it. And THAT would bring Stockholm on a par with Malmö, where SA is said to be superposed on the word accent, increasing its range. See further below about Malmö, though.

(c) Malmö

The speakers from Malmö (MD and HD, figures 12 and 13) conform exactly to what is known already, cf. Bruce and Gårding (1978) and Touati (1987): the word accent patterns are reversed: The typical Accent II pattern in Stockholm, the fall(-rise), is the Accent I pattern here, though the pattern does not rise but stays low and level on the post-tonics, and vice versa, the typical Accent I pattern in Stockholm, the rise(-fall), is the Accent II pattern here. There would be no problems here with a description in terms of an earlier (I) versus later (II) Fo fall in the Malmö data.

MD produced no perceptible sentence accents, and his traces are remarkably similar in the three different conditions, especially 'Anders och Kamma skall till Sandvik', where even the durations measure up to the same value. In the lower part, the utterance from the context that invited initial sentence accent differs somewhat from the others: the final stress group has shrunk, which fits an auditory impression of a certain downgrading of its prominence (which did not put a perceived sentence accent on any of the preceding words). MD pronounced the topmost utterances with stressed 'kommer', and as noted earlier, all of his utterances sounded as if the second stress group was slightly more prominent than the surroundings, which may be attributed to its slightly higher position in the range.

Figures 12 and 13

Average fundamental frequency tracings (logarithmic display) by two Malmö speakers of three utterances, uttered in isolation and in different contexts. Utterances in isolation are drawn in full lines, utterances with invited final sentence accents in broken lines, initial sentence accents in dotted/broken lines, and utterances with invited medial sentence accents in dotted lines. Note though that very few sentence accents were actually perceived, see further the text. The word accents are identified in Arabic numerals above the stressed vowels in the sentences. See further the legend to figures 1-7. Note that HD produced 'Kamma kommer från Svaneke' with unstressed 'kommer'.
Figure 12
The second stress group here could be described as a "pivot" in Gårding's (1986) terminology, i.e. a point where the global trend changes direction (in casu: from rising to falling) or where the "grid" within which Fo moves up and down changes width. Gårding (1986) makes the location of the pivot syntactically determined, but that can hardly be the case here, since the NP/Predicate boundary is differently located in the topmost versus the two lower utterances.

HD produced some sentence accents initially and finally, respectively, in the topmost utterance and one medial and some final SAs in the middle one. In the lower part of the figure, the broken line is the utterance from the context which invited final sentence accent, but did not sound like it had any. The broken/dotted line is the utterance which could have had an initial SA, but did not. However, this utterance and the isolated one both sounded as if 'syster' was slightly more prominent than the surroundings, cf. the remarks about MD above.

The manifestation of the scattered sentence accents by HD is very different from the Stockholm data, and also rather at odds with what Bruce (1979), Bruce and Gårding (1978), and Gårding (1978) found, but quite in line with Touati (1987) who also used HD as (supplementary) speaker: final sentence accent does not increase the Fo range of the stress group, relative to The neutral edition, but it lowers/diminishes the first stress group pattern (figure 13, top and mid). Initial sentence accent (figure 13, top) has a slightly wider range, but the skip up to the post-tonic syllables ('kommer från') is much more conspicuous, together with the smaller movement in the final stress group. The medial sentence accent does have a wider Fo range, which is achieved by extending the fall which is what the literature prescribes. But it also shares the lowering/diminishing of the first stress group and the rise through the post-tonics with final and medial SA's, respectively. So the reinforcement of the word accent by superposition of an SA is not unambiguous, it seems, and SA has other effects, besides.

In other words, the two Malmö speakers differ from the two Stockholm speakers partly in their lack of any (syntactic/prosodic final - default) sentence accent in isolated utterances, and in their pronounced reluctance to express the theme/rheme structure of an utterance prosodically. Those few sentence accents actually present also get realized differently (less unambiguously). Nor does the realization of sentence accent resemble the Bornholm data, which in fact are much closer to the Stockholm data as far as realization goes (but not in the exceptionless application).

There is a further difference between Malmö and Bornholm in the more global trends: where the Bornholm speakers, in neutral and final SA utterances, produce a high and level contour, with a comparatively narrow range of Fo variation, preceding a sharp final fall, the Malmö speakers have a mildly
rising-falling global trend with approximately equal magnitude
Fo variation in each stress group.

(d) Copenhagen

NRP (figure 14) shares with MD from Malmö the nearly complete
identity between utterances from different conditions. The
lack of any Fo/pitch prominence is evident, as is the distribu-
tion of a gradual, global, sentence intonation fall from the
first through the last stressed vowel. The low-high-falling
stress group pattern is also apparent. (The fact that 'Anders'
exhibits a clean rise is due to the glottal attack at the on-
set: note that 'Kamma' and 'Torben' onset at around 10 semi-
tones, and the low turning point lies around 8 semitones.
'Anders' onsets much lower, but passes through 8 semitones
at the same point in time where the low turning point in 'Kamma'
and 'Torben' is located.)

The auditory impression of focalization of initial and medial
items, though not of any sentence accent in NT's utterances,
is corroborated by figure 15, where a certain shrinking of
the succeeding stress group after an initial focus and of the
stress group preceding a medial one, respectively, can be ob-
erved. The item which gave the auditory impression of being
focalized has not an inkling of wider range, quicker movement
or longer duration, compared with those utterances where no
clear focus was perceived, and I do think it is justified to con-
ceive of these utterances as being without sentence accent,
though not without a relative (down-)grading of the prominence
of the (non-focal) stressed syllables. The realization of
initial and medial focalization (note that NT did not produce
any final foci) is reminiscent of - though not identical with -
the way emphasis for contrast is realized, cf. figure 16.
Emphasis leads to a deletion of surrounding stress group pat-
terns (i.e. on both sides) as well as to a certain increase
in the Fo level and range of the emphasized item.

In conclusion, the lack of any sentence accent in Copenhagen
Danish, as it is understood in, e.g., Standard Swedish, is
uncontestable. Its non-compulsory status in Malmö has been
corroborated by the present data, as has its presence as an
option for Bornholm speakers, and its (near-)universality in
Stockholm. This very different way to deal with utterance
prosody may reflect differences elsewhere in the spoken language.

Figures 14 and 15

Average fundamental frequency tracings by two Copenhagen speakers
of three utterances, uttered in isolation and in different con-
texts. See further the legend to figures 12 and 13 and figures
1-7.
Figure 15
Fundamental frequency tracings (mean of means over six readings by each of three subjects and ten readings by one subject) of 'Der går mange busser fra Tiflis.' [də ʁø̂ː ˈmaŋŋ ˈbʊsə frɑ ˈtiflis]: prosodically neutral (S - "full lines") and with emphasis for contrast (dotted lines) on 'mange' (SA - top), on 'busser' (SB - mid), and on 'Tiflis' (SC - bottom). Zero on the logarithmic frequency scale corresponds to 100 Hz. The tracings have been lined up according to the beginning of the emphasized vowel (heavy stroke on the time scale). Reproduced from Thorsen, 1980b.)
Does a language/dialect which has neither a default (-pitch prominent) sentence accent nor a rhematically conditioned one (like Standard Danish) have a different spoken language grammar from a language which has both default and rhematic sentence accents (like Stockholm Swedish)? And does a language/dialect with facultative SA's have different options or more freedom in the spoken language grammar, one which necessitates prosodic signalling of rhyme/theme distribution and one which makes that superfluous? To answer these questions, we need more research into spontaneous, spoken language. The other pending question, that of focus as sentence accent or focus versus sentence accent will be dealt with at the end of the succeeding section on duration.

3. Duration

I have hinted several times above that pitch prominent, un-invited (default) and contextually invited sentence accents have different consequences for the total duration of an utterance: an invited sentence accent seems to abbreviate the utterance more than an uninvited one. Of course, the uninvited SA's occur in sentences uttered in isolation, and the invited ones where another sentence precedes, and this difference in itself might explain the difference in duration, i.e. an utterance may be shorter when it occurs as (the final) part of a text than when it occurs in isolation, ceteris paribus.

The durational data presented here does not lend itself to any statistical treatment, because of its disparity and scarcity, but a trend can at least be observed. The speakers fall into four groups for the present purpose: the two Stockholm speakers, the two plus two Copenhagen and Malmö speakers, four Bornholm speakers and three Bornholm speakers. The subdivision of the Bornholmians is due to their different inclination to produce default sentence accents: KP and RK never did; CA produced isolated utterances with double sentence accents; HC produced plenty of final sentence accents in isolation but each item with a (auditorily and acoustically) different manifestation (apparently due to different "readings" of the same utterance). From those four (group II in figure 17) only isolated utterances without SA and utterances from context with final SA are included in the calculations. HP, JT, and IB (group I) are ideal from the present point of view: they produced isolated utterances with and without sentence accent; HP and JT also produced utterances from context with and without SA. To make the durational data comparable across speakers, a normalization is required. The isolated, no SA edition of each sentence is set at 100, and the others adjusted proportionately. The Stockholm speakers (group III) had no isolated utterances without SA (with the exception of two items by BjH), so when the average duration for isolated utterances with SA by group I had been found (96.4 re 100 cs), that was the value assigned to the same utterances by the Stockholmiens, and their utterances with SA from context was calculated to this proportion.
Figure 17 presents the results for the four groups of speakers. The number of sentences behind each average is given in raised numerals. For groups II-IV, there is generally 5 or 6 items behind the average for each sentence, but that cannot be so for group I, where the sum of items with and without SA for each sentence does not exceed 6. Granted the reservations which are due to the complexity of the data, certain interesting observations can be made: abbreviation due to context in utterances without SA amounts to about 3% (see group I and IV, broken lines versus full lines). Abbreviation due to context in utterances with SA (dotted/broken versus dotted lines) amounts to 5.9% (group I: 96.4-90.7 as a percentage of 96.4) and 7.0% (group III: 96.4-89.7 as a percentage of 96.4), respectively, averaging at 6.5%. Adding a sentence accent to an isolated utterance will abbreviate it by 3.6% (full versus dotted/broken lines, group I). In other words: take an isolated utterance and give it a default final sentence accent, and it will come down to 96.4% of its original duration. Take the same utterance and put it into a context which invites a final accent, and it will come down to around 90%. Only about 3% of that abbreviation can be ascribed to its being in context, as such. The remaining 7% is due to the invited sentence accent, which is more than the 3.6% that a default accent will yield. - So there is some support to be had for a statement to the effect that invited and uninvited final sentence accents have different effects on an utterance: the invited SA reduces the utterance more, both in terms of duration and in terms of Fo (I am referring to the lowering/shrinking of preceding stress groups with some speakers).

The abbreviation due to sentence accent is approximately evenly distributed over the utterance (this can be seen from the Fo tracings in figures 1-7 and 10-11), but not quite, as witnessed by measurements of the duration of the part of the utterance preceding the final stress group (A) and of the total duration. The relevant data come from the three Bornholm and the two Stockholm speakers (groups I and III). The smallest value in each set of utterances (each sentence) is A in the utterance with invited sentence accent. When that is set at 100 and the other measures adjusted proportionately, averaging over speakers is possible. Since the final word undergoes 'final lengthening' in Stockholm (see further below) but not in Bornholm, the two groups must be treated separately. Figure 18 shows the results. - The utterances from context with invited sentence accent are shorter than the isolated ones with sentence accent, which in their turn are shorter than isolated utterances without sentence accent (Bornholm), cf. above. The shortening of the final item itself is modest, cf. the rightmost parts of the figure. The major part of the shortening is carried by the preceding part of the utterance, which accordingly takes up a smaller proportion of the whole utterance preceding an invited versus an uninvited SA, as indicated by the percentages written in the figure. Those percentages are relatively smaller in Stockholm than in Bornholm, due to the lengthening of the final word.
<table>
<thead>
<tr>
<th>Speaker</th>
<th>% Initial</th>
<th>% Final</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Invited SA Stockholm</td>
<td>64.7%</td>
<td>54.6</td>
<td>154.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uninvited SA</td>
<td>65.9%</td>
<td>56.6</td>
<td>165.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invited SA</td>
<td>68%</td>
<td>47</td>
<td>147</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uninvited SA Bornholm</td>
<td>69.8%</td>
<td>46</td>
<td>152.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No SA</td>
<td>70.3%</td>
<td>47</td>
<td>158.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 18

Normalized durations of utterances by two Stockholm speakers and three Bornholm speakers, with and without final sentence accents, as indicated to the right of the figure. A is the part of the utterance preceding the final stress group. See further the text.
It is highly desirable that these observations be confirmed by further data, but in their absence I will stick my neck out some and suggest that default sentence accents and accents for focus or rheme signalling are two different phenomena, both with regard to their function and their phonetic form.

4. Conclusion

I would suggest that Stockholm Swedish has an obligatory default sentence accent, whose application is syntactically and/or prosodically determined (in a loose term it is phrase-final, whether the phrase be syntactically or prosodically defined. Isolated utterances occasionally are supplied with both an initial and a final sentence accent). Stockholm Swedish also generally signals focus or rheme with prosodic means, with a focal accent, which in final position resembles the default sentence accent, though it may be associated with a somewhat larger Fo excursion, and, more particularly, it shortens the utterance more and it may entail a certain lowering/diminishing of preceding Fo patterns without, however, jeopardizing the differentiation of the two tonal word accents. I would like to inquire whether the loss of the rise, found elsewhere in Accent II words, in post-focal position could be interpreted as a loss of an autonomous Fo pattern, which in its turn might be ascribed to a de-stressing, i.e. whether the main stress of lexically stressed words is not down-graded to secondary stress in post-focal, but not pre-focal position? The secondary stress status would imply that other characteristics of main stress, e.g. duration, are retained, as also implied by Bruce's (1981) results, a state of affairs analogue to the difference between the phonetic manifestation of main and secondary stress in Danish, cf. Thorsen (1980b). - I would also like to call attention to the one utterance (three items) by Ek, where I had no doubt that its second stressed word was in focus, but which lacked the ordinary acoustic signs of a sentence accent, except for the reduction of the tonal pattern on the following stress group. Does this mean that focus can be brought about (in Stockholm) through stress reduction (or succeeding words) only?

The situation in Bornholm resembles Stockholm to a certain extent. But the default, final sentence accent is not obligatory (and some speakers do not use it at all). Furthermore, utterances in context do not invariably signal a focus or rheme with prosodic means (spliced out they sound like isolated utterances), but when they do, the focal accent resembles the Stockholm way to render it (increased Fo range on the focalized item, lack of autonomous Fo patterns on succeeding ones).

The Malmö speakers are, curiously enough, more different from Stockholm than the Bornholm speakers are. They lack a default accent, and the focal accent is not obligatory. When and where it is employed (which was only in some utterances by one speaker), its prosodic expression is less conspicuous as an increased Fo movement on the stressed syllable, but the post-
tonics may perform a more ample movement (they rise rather than stay low and level after the fall of Accent I - I have no data on focalized Accent II words from Malmö), and the preceding stress group pattern(s) shrink(s). Succeeding patterns do not seem to suffer the same obliteration as is characteristic of the focal accent in Stockholm. In other words, the focal accent is much less explicitly and generously signalled in Malmö than in Stockholm and Bornholm.

Copenhagen Danish lacks a default sentence accent, and focus rarely gets expressed prosodically (especially not in final position, which is interesting since final position attracts more focal accents than medial position, when it is facultative (Bornholm, Malmö)). When such is the case, the sole means seems to be a downgrading of surrounding stresses, though the low+high pattern is retained, but no amplification of the focalized item. (This is the difference from emphasis for contrast, where the emphasized item generally does have a more ample movement, and where surrounding stress group patterns are deleted.)

To sum up: I suggest that the non-provoked, syntactically and/or prosodically determined, extra Fo/pitch prominence associated with final (and occasionally also initial) stressed words in Stockholm and Bornholm be termed default sentence accent, which may be obligatory (as in Stockholm) or facultative (as in Bornholm). As a phenomenon apart, there exists a focal accent whose prosodic manifestation is somewhat different from - stronger than - the default sentence accent. It may be very general (as in Stockholm), less general but frequent (as in Bornholm), comparatively rare (as in Malmö), and non-existent or taking a very different prosodic shape (as in Copenhagen). - It is tempting to speculate, as I noted above, that with such a difference in the prosodic systems of otherwise very closely related languages follows a difference in the spoken language grammar (as opposed to the written language). Here is evidently a point for further investigations.

B. SENTENCE INTONATION

1. The Kamma utterances

The fairly short, terminal declarative utterances described above group themselves in three major types, according to the regional language: Copenhagen speakers signal the function of the utterance globally, i.e. evenly across the stressed syllables, with no extra movement finally. The final stress group is not qualitatively different from preceding ones: its post-tonic syllable rises from the low fall of the stressed one, although this rise is of a somewhat smaller extent than in preceding stress groups, which creates the impression of a wedge-shaped "grid" within which Fo rises and falls. This is entirely in accordance with previous results on Standard Danish terminal declarative sentence intonation, cf. Thorsen
Stockholm Swedish speakers signal the declarative function
mainly through the fall in the final stress group (in utter-
ances with no sentence accent as well as with final default
or focal accent). This fall is more extensive in time when
the focal accent is moved left in the utterance, i.e. it ex-
tends from the peak Fo value of the focalized item to the end
of the utterance. Stockholm and Bornholm speakers differ in
the precise manner in which they perform the fall in a final
(accented) stress group. With the Bornholm speakers it is
contained within the stressed (and post-tonic) syllable(s)
which has the effect of reversing the otherwise prevailing
low (falling)-high (rising) stress group pattern into a high-
low (high-falling) one. (Exceptions are KP and IB, final
'Svaneke', where the terminal fall is added to the fall-rise
pattern.) The Stockholm speakers tag the fall onto the same
pattern which characterizes the stress group in other posi-
tions (compare initial accented 'Kamma' and final accented
'Kamma' in figures 10 and 11, top and bottom). The stress
group is considerably lengthened finally (which is not the
case in Bornholm, see further below). (What is cause and
what is effect is of no concern here, i.e. whether the
lengthening is a passive consequence of the extensive, complex
Fo movement, or whether it is an autonomous boundary feature
to which Fo is adjusted. The reader is referred to Lyberg
(1979, 1981) and Bannert (1982) for opposing views on this
issue.) Bruce (1977) showed that when word accent, sentence
accent and terminal juncture commands pile up on one utterance
final (Accent I) syllable, the sequence of canonical rise-fall
+rise+fall is adjusted (compressed) to a rise+high plateau+
delayed fall. When a (disyllabic) Accent II word is utterance
final and accented, the fall-rise+rise+fall results in an
undershooting of the sentence accent target maximum and a
delayed fall. I have no examples of the former case, but the
final accented Accent II words ('Kamma' and 'Svaneke' (ER
only)) conform well with Bruce's statements. In other words,
the terminal junctural fall is added to a pattern which may
undergo a certain compression, while at the same time the
whole sequence is lengthened, relative to other positions in
the utterance.

The Malmö speakers behave differently again. The global trend
is mildly rising-falling, with the second stress group as
turning-point or pivot. It is not apparent that those final
falls that occur are systematically more extensive than else-
where in the utterance, ceteris paribus, cf. figures 12 and
13. (This is not due to the rarity of (final) sentence or
focal accents, per se, because the Bornholm speakers' local
final falls occurred also when no sentence accent was per-
ceived.)
2. The long declarative and the questions

The long declarative utterance, and the dialogue with a wh-question and a one-word echo-question should illustrate further similarities/differences between the four regions.

(a) The long declarative (figures 19-31):

These utterances confirm, to a large extent, what has been said already. But there are some modifications to be made. Note, first, that Stockholm speaker ER phrased and paused after the noun phrase and before the time complement. She is not considered any further at this point. Other speakers also bear witness to moderate resetttings of the long intonation contour, see further below.

NT clearly belongs with the Bornholm speakers here, as far as the distribution of the fall is concerned. In a previous investigation of long sentences (Thorsen 1983) I also deviated from the pattern set by other Copenhagen speakers, which is probably testimony to too much familiarity with the material and lack of naïveté as to its purpose, rather than a Copenhagen feature. Thus, two groups are formed, one composed of the seven Bornholm speakers, BjH (Stockholm) and NT (Copenhagen), and one of MD, HD (Malmö) and NRP (Copenhagen). There are differences within the group of Bornholm speakers as to how stress group patterns are shaped. They will be mentioned briefly below in this section and again in section III.C, but they are of no concern for the matter at issue here.

(i) Sentence accents. Before I proceed, I should note that I have found (by listening) considerably fewer instances of (final) default sentence accents (with the Bornholm and Stockholm speakers). One would expect them with ER, BjH, HP, HC, IB, JT and maybe CA, who produced double accents in isolated Kamma-utterances. ER did not produce any sentence accents in any of the three phrases, cf. figure 27: compare phrase-final 'Torsson, Snobeback' with final 'Svanekke, Kamma' (Accent II) in figure 11 and compare final 'tisdag' with final 'Sandvick' (Accent I). The present examples compare much better with final, post-focal words in the Kamma-utterances, although I perceived no accents earlier in the phrases, either. BjH produced a perceptible prominence on final 'tisdag' which is backed up by the resemblance to final, accented 'Sandvick' in figure 10, i.e. the Accent I rise is located high in the range, relative to the preceding contour, and the fall to the post-tonic is both deep and steep. Among the Bornholm speakers HP is the only one who performed an unambiguous final accent: the last stress group covers a wide range, it begins high up, relative to the preceding contour (which cannot be said for any of the other speakers), and it also compares well with final accents in the isolated Kamma utterances (figure 1), although here it does not lead to a change in the preceding stress group pattern (no twisting down of its post-tonics).
The scarcity of default sentence accents in these utterances could be due to the nature of the sentences and the reading task, combined. In other words, I am suggesting that default accents are more likely to occur when the speaker is not required to pay as much attention to the "on-line" production of an utterance as is the case here: the sentences are long, and every lexical word is 'new' to the speaker, which is not an entirely unlikely reason for blocking an otherwise normal (obligatory or facultative) interplay between syntax and prosody.

The two Malmö speakers do not repeat the symmetrically rising-falling overall contour from the short Kamma-utterances. The higher fall on the second stressed syllable might be said to constitute a "pivot", however, as it did in the shorter utterances as well, though it is not very sharp. The ensemble of unstressed syllables perform a gently sloping downward course from beginning to end, a lower line which functions as point of departure or arrival for the falling (Accent I) or rising (Accent II) movements of the stressed syllables. (This is contrary to Touati's (1987) account, where the maxima in the tracings are seen as the stable points, from which falls of varying depth set off, according to their degree of prominence.) In much the same way, the lower turning points in the stressed syllables of NRP step down gradually from left to right in figure 29, though a slight resetting seems to occur between the third and fourth stress group.

(ii) Local and global falls. In order to quantify the observation of local versus global terminal falls, I have measured the highest and the lowest F0 point occurring during the first six stress groups, and likewise the highest and lowest F0 in the final one. The results are given in figure 32, where the two speakers that had a final sentence accent (KP and B3H) are separated out (group I) from the rest of the "local" speakers (group II). Groups I and II are conspicuous by the fact that the lowest F0 in the final stress group (broken lines) is about 5 semitones lower than the lowest F0 value in the preceding part of the utterance (full lines), whereas with group III, the final low appears slightly higher in the comparison.

Figures 19-31

Average fundamental frequency tracings (logarithmic display) of a long terminal declarative utterance by seven Bornholm speakers, two Stockholm speakers, two Copenhagen speakers, and two Malmö speakers. Bornholm and Copenhagen speakers recorded the sentence indicated in figure 19, except that the Copenhageners went from 'Pugglebjerg' to 'Soerø'; the Stockholm and Malmö speakers recorded the sentence indicated in figure 26. The stressed syllables are drawn in thicker lines than the unstressed ones. The number of items is given in the upper right of each figure. Zero on the frequency scale corresponds to the same value as indicated in figures 1-7 and 10-15. Note that the time scale is compressed compared with previous figures. Note that the post-tonics are represented in continuous lines with Bornholm and Copenhagen speakers.
Figure 19

'Kofod og Thorsen skal med 'villebilen fra 'Godthavn til 'Smygterk Klokker' fire på 'Tindag'
Figure 26

`Kofol och Tomson ska med busen från `Judohem kall` Smogboks klokan `fyra på `tidag

\[B_{1H} \text{ centiseconds} \]

\[2 \quad 1 \quad 2 \quad 2 \quad 1 \]

\[0 \quad 100 \quad 200 \quad 300 \quad 400 \quad 500 \]
Figure 27
Figure 29
Part of the reason for the apparent step up here is that the final unstressed vowel could not be measured with MD and HD, due to highly irregular creaky voice vibrations but, obviously, when you look at how post-tonic syllables behave in Malmö, a final measurement would not have brought the average anywhere near 5 semitones lower than the preceding low Fo. - The difference between utterances with and without sentence accent is also very apparent: with no sentence accent (group II) there is hardly any overlap between the range covered by the first part and that covered by the final stress group in the utterance. (The smaller and lower range in the initial part of the utterance with group II versus group I is due to the inclusion of two speakers (IB and CA) with considerably narrower ranges than the rest, cf. also table IV.)

![Graph showing ranges of semitones for different stress groups.](image)

Figure 32

Range covered by the first six stress groups (full lines) and the final stress group (broken lines) in figures 19-31. Group one consists of HP and BjH (figure 19 and 26), group two consists of the remaining six Bornholm speakers (figures 20-25) and one Copenhagen speaker (NT, figure 28), group three consists of the other Copenhagen speaker (NRP) and two Malmö speakers (figures 29-31). See further the text.

(iii) Resettings. As noted above, some speakers appear to have slight resettings of the intonation contour, and some do not. With MD and HD (figures 30 and 31) no breaks in the global trend appear. Three speakers, HC, CA, IB (figures 20, 21, 22) perform a rise from the first to the second stress group and an even fall thereafter. ER (figure 27) is excessive in the other direction: she has three clearly distinct (not just by the pauses between them) prosodic
phrases, each with its own overall fall, of which the last one appears to be steeper than preceding ones. As also noted above, ER did not produce any default sentence accents here, and the fall within each prosodic phrase lies across the stressed syllables, rather than within the last stressed syllable in each phrase. This is an entirely different mode from the other Stockholm speaker (and the Bornholm speakers) and also different from her own production in the Kamma-utterances. Again, I can only repeat that speech production is subject to a considerable variability, and different styles or "readings" may wreak havoc with what linguists and phoneticians otherwise consider as deeply rooted phenomena, in casu phrasal intonation and default sentence accent. If I were to hazard a characterisation of ER's reading of this long utterance, I would say that it was slow and very deliberate as if wishing to impregnate on the listener the importance of every word, though entirely unemotional.

Seven speakers (HP, JT, RK, KP, BjH, NT, NRP) came out with a slight resetting of the intonation contour, namely a skip up between the third and fourth stress groups, i.e. after the verb phrase, before the complement of place. There is nothing surprising in this, and I have found similar trends in Copenhagen in general (Thorsen, 1983). And, as in the Copenhagen material, although the resetting is associated with a syntactic boundary, it is not exactly coincident with it. The syntactic boundary (/) occurs before 'fra/från' ('... med rutebilen// fra Gudhjem .../ ... med bussen//från Gudhem...'), but no disruption of the smooth course through all the unstressed syllables can be detected, i.e. the initial unstressed word in the complement ties up prosodically with the final stress group in the preceding verb phrase.

(iv) Preplanning? I have argued previously (Thorsen 1983, 1984, 1985, 1986a, 1986b) that the globally falling sentence intonation contours of Standard Copenhagen cannot be satisfactorily accounted for without the assumption of a look-ahead and pre-planning mechanism in their actual production (as opposed to a claim that global trends are the result of the iterative application of local rules, which are sensitive only to preceding, not succeeding, events, cf. Pierrehumbert, 1980, 1983, and Liberman and Pierrehumbert, 1984). It would seem a priori more likely that utterances with a moderate declination, prior to a steep final fall, could be accounted for without much pre-planning on the part of the speaker. The gentle pre-final declination would then be ascribed to physiological (automatized) factors. However, the pre-final declination is – with some speakers (HP, HC, JT, RK, KP) – rather considerable, and it remains to be seen whether its slope may not be sensitive to duration, which would bear testimony to a pre-planning based on the number of up-coming events (number of stress groups). Likewise, a resetting of the contour does not make much sense if the speaker is not supposed to know – during the production of the utterance – how much material is still left.
(v) Stress group patterns. A final note about stress group patterns, which cut up the Bornholm speakers in yet a different grouping: HP, HC, and CA have the familiar (from the Kamma-utterances) low-falling + rising pattern. JT, RK, and KP do differently here: the low fall in the stressed syllable is succeeded by an abrupt rise to the onset of the first post-tonic, and the post-tonics then remain high or fall slightly after that with JT and RK, whereas they fall steeply with KP. IB follows the pattern set by HP, HC, and CA in some of his utterances, while in others he reverses the pattern into a high-rising + falling one. Thus a total of three different Fo patterns are attested: falling-rising (very common), rising-falling (not frequent), and falling-falling. (If nothing else will, this should convince the reader that present-day Bornholm does not have any word tone distinction à la Swedish.) - These differences may be ascribed to different readings, which created the impression of a neutral attitude from HP, HC, and CA, whereas JT, RK, KP and IB's reversed editions sounded more insistent, but of course it would take Bornholm speakers to ascertain these impressions.

To sum up: Stockholm and Bornholm signal terminal declarative sentence intonation mainly through the steep fall in the final stress group (added to the word accent pattern in Stockholm, obtained by an inversion of the stress group pattern in Bornholm), with gently sloping contours preceding the fall. Again, Malmö and Copenhagen team up (if previously published data on long sentences in Copenhagen is considered, and NT is ranked as an exception to the general tendency) with a global, overall falling contour where the final stress group does not deviate from preceding ones in terms of the direction or extent of its Fo movement.

(b) The questions (figures 33-45):

The question with question word was produced with three stressed syllables (no stress on 'er/är') by KP, IB, and partly HD; five stressed syllables (also stress on 'hvör') by HP and RK, four stresses by the rest. Five Bornholm speakers have no prosodic signalling of the interrogative function: HP, CA, JT, RK, and KP,

Figures 33-45

Average fundamental frequency tracings (logarithmic display) of a question with question word, succeeded by an echo-question. Seven Bornholm speakers, two Stockholm speakers, two Copenhagen speakers, and two Malmö speakers. Bornholm speakers recorded the utterances as indicated in figure 33, Stockholm and Malmö speakers' utterances are indicated in figure 40, and Copenhagen speakers' in figure 44. The stressed syllables are drawn in thicker lines than the unstressed syllables. Deviation in stress-assignment is indicated with HP, IB, RK, KP, ER, HD. The number of items is given in the upper right of each figure. See further the legend to figures 19-31.
'Hvor
Hvor 'langt' er der fra 'Sandvig' til 'Svaneke?'

Figure 33

INTONATION ON BORNHOLM
Figure 39
Figure 44

Hvor lang er der fra 'Nykind' til 'Fakse'?

Til 'Fakse'?

m=3
i.e. these utterances look exactly like terminal declaratives, with a final default sentence accent by HP and JT, without it by CA, KP, and RK. Two speakers turn the very final fall—through the last post-tonic—into a rise, i.e. they signal the interrogative function with a local, final (rising) movement: HC and IB; and all of the preceding utterance resembles exactly the declaratives by HP, CA, JT, KP, and RK.

The four Copenhagen and Malmö speakers produce prosodic terminals, entirely in line with those described above. So does ER (Stockholm), and again she does not produce a final default sentence accent: compare this edition with accented 'Svaneke' in figure 11 with its rapid rise in the first post-tonic syllable succeeded by an equally rapid fall to the second post-tonic (the terminal cue) and the final pre-pausal rise. What remains in figure 41 is the word accent fall and the pre-pausal rise. ER furthermore produced two items with a focal accent on 'är' which should guarantee that no sentence accent occurs finally: The final part of the two different renderings look exactly alike, except that the utterance with focal accent is shorter than the one without it. BjH uttered four items which I perceived as having a declarative intonation and two interrogative ones. The difference in the final part is slight and has to do with the relation between the stressed and first post-tonic: in the interrogative the stressed syllable is at the low onset of a rise that continues through the post-tonic (i.e. a low-high sequence), whereas in the declarative edition the stressed vowel rises more steeply and the high turning point is reached at the onset of the first post-tonic vowel, which is falling. This is not entirely in agreement with Gårding et al. (1974) who state that in Stockholm statements and questions have similar final configurations, only the accent peak is higher in questions.

Briefly, most speakers produced question word questions with declarative intonation contours, but those Bornholm and that Swedish speaker who did perform intonationally marked questions did so according to their local disposition: only the very last part of the contour deviates from a declarative one, i.e. the non-final Fo course carries no information about the interrogative function of the utterance. The option to produce declaratives intonationally is not open where the one-word echo question is concerned: but here the variability is impressive, a variation which may be attributed to differences in speaker attitude, or "reading": the high and rising pattern by HP, CA, IB, and JT sounded neutral to me, the low plus very high rise by HC transmitted an element of incredulity, and the rising-falling patterns (extensive by RK, less so by KP) sounded maybe somewhat gruff. Common to these questions is a feature of 'high' or 'rising'. The Stockholm Swedish speakers both conform well with Gårding et al. (1974): the pattern is undisrupted but the peak is considerably higher than in declaratives, reaching the upper end of the speakers' range. The Malmö speakers ought, according to Gårding et al. (1974) to have performed a rise in the final vowel. They do not do so here. The Accent I pattern is the same as in statements,
but it onsets from a considerably higher value and continues through the post-tonic. NRP and NT do not deviate from one word questions investigated previously (Thorsen 1978): the stress group pattern remains low plus high, but is transposed upwards relative to the location at the end of a declarative utterance.

C. ALIGNMENT OF SEGMENTS AND FUNDAMENTAL FREQUENCY

1. Compression or truncation

The principal issue here is whether fundamental frequency patterns associated with prosodic stress groups are truncated or compressed in time, when the stress group is shortened, but a number of other observations may be made as well, cf. section 2 below.

(a) Systematically shortened stress groups

I shall look first at those five stress groups (words) where the voiced stretch is shortened progressively, exposed in figures 46-58. I should point out again that I made a mistake in the construction of the material: 'vand, kat' and 'mjölk, katt', respectively, were the intended comparisons with the three words at the top of the figures, but I disregarded the fact that those three longer words constitute the first stress group in the utterance (preceded only by unstressed words), whereas the shorter words are preceded by another stressed word. That first stressed word ('koldt, kall - grå') is therefore included and will replace 'vand, mjölk - kat, katt' in the comparisons.

The Bornholm speakers pronounced the words in the five frames as follows: ['kʰɔːnænə 'kʰɔ̝ːnænə 'kʰɔ̝ːnænə 'kʰɔ̀l]t 'væn 'ɡɔ̝ːn 'kʰæt] with nasal diphthongs replacing the (Standard Danish) sequence of short vowel plus homosyllabic /n/ in the second and third word, which precludes any accurate statements about the alignment of turning points in the Fo course with specific segmental events. However, the consequences are not too grave.

Some segmental effects are very strong with some speakers: I attribute the uneven rise (steep and then less steep) in 'grå' with HP (figure 46) and IB (figure 49) to the uvular consonant [ʁ], and although it did not produce any discontinuities, the [ɡɔ̝ː]- versus [kʰ]- onset is probably responsible for the clean rise versus slight fall plus rise in the lower part of figure 47 (HC) and 52 (KP). JT (figure 50) runs counter to the other speakers, as far as the onset after the aspirated stop is concerned: a steep rise and then a fall-rise which could be superposed upon and coincide with the latter part of the fall-rise exhibited by the other Bornholm speakers.
Figures 46 - 58

Average fundamental frequency tracings (logarithmic display) of three words and two pairs of words, where the voiced stretch becomes progressively shorter through the frames, by seven Bornholm, two Stockholm, two Malmö, and two Copenhagen speakers. When the sonorant consonants could be delimited, they were drawn in broken lines. See further the legend to figures 1-7.
Figure 47
Figure 48
Figure 49
Figure 50
Figure 51
Figure 53
Figure 54
Figure 55
Figure 56
Figure 57
Figure 58
Inspection of JT's oscillogram and intensity curves reveals weak voicing in the beginning of the stressed vowel, i.e. the intensity is either very low during the first 4-5 cs and then rises sharply, or it rises gradually during the same period of time. This is indicative of vocal cord vibrations around a not yet completely adducted position, a breathy onset of the vowel, which will indeed lower Fo, ceteris paribus, (i.e. if the relative decrease in the Bernouilli effect caused by the non-adducted vocal cords is not countered by an increase in transglottal airflow).

The two Stockholm and Copenhagen speakers do not give rise to similar comments about variability, except that NRP and NT both produce slight rise-falls instead of clean falls in 'grå'.

The different onsets with the two Skanian speakers (figures 55 and 56) are not, I think, to be seen as differences in segmental effects (which would be hard to motivate, anyway, given that we are dealing with [kʰ] in most cases). Rather, I think that the brief "reversed" movements at the onset of the word accents serve to highlight the significant rises and falls, respectively. The more "orderly" behaviour of the Stockholm and Malmö speakers vis-à-vis the Bornholm speakers might reflect a difference between languages with and without distinctive (word) tones. Thus, Hombert (1978) suggests that there is an active process in tone languages which brings segmental effects in speech production within (time) limits where they do not interfere with the perception of the significant tonal events.

If we disregard, or visually compensate for, the variability exhibited by the Bornholm speakers, the following rather clear trends appear from figures 46-58. The Bornholm speakers compress the Fo pattern associated with the prosodic stress group under compression in time (until a compressibility maximum is reached, cf. below): in the polysyllables at the top of figures 46-52 the same Fo peak is reached at the end of the three words - it certainly does not lower. This is most easily appreciated with those speakers where a considerable shortening is found, from left to right, namely HC, CA, IB, and KP, where it is also clear that only the rising slope, not the fall, is affected by the compression: the wide valley becomes a sharp turning-point and/or the slope of the rise gets steeper, from left to right. Most speakers have a considerable initial fall (3-5 semitones) prior to the onset of the rise, which turning point occurs 15-20 cs after vowel onset and corresponds to the offset of the long vowel (cf. 'kanerne'). RK (figure 51) is an exception: the initial fall is very slight, rather brief (lasting around 8 cs), and consequently the turning point is located in the first half of the stressed vowel.

The monosyllables in utterance initial position retain the rise exhibited in the polysyllables (both qualitatively and quantitatively, i.e. its magnitude is not decreased, except slightly with HC and IB), but the initial fall is cut back! The, now isolated, rise is located within roughly the same margins on the frequency scale as in the polysyllables. Thus, the Bornholm speakers can be said to compress their Fo patterns
as far as possible. However, there are limits to the speed with which F0 changes can be brought about, and when the compressibility maximum is attained, the pattern is truncated, though not from the end but from the beginning, which means that the strategy for aligning segments and F0 patterns is altered. These procedures, both the compression and the change in strategy with ultra-short stress groups, bear testimony to pre-planning and look-ahead in the "on-line" production of the seven Bornholm speakers.

'koldt' and 'grå' were both pronounced with phonetically long vowel sounds. So was 'vand' but not 'kat'. That the voiced stretch in 'kat' is too short for anything but level movements, modified by the context, would not disqualify the statements just made about F0 patterning in Bornholm, but I do not see why 'vand' could not have made more than the rather feeble attempts at a proper rise attested by everyone, except JT who reproduces the extensive pattern from 'koldt' (the final fall in JT's 'vand' is probably due to the succeeding obstruent in 'slukker', cf. the drastic effect of his initial aspirated stops; and whether the initial slight fall in 'vand' is a not completely truncated "full form", or a consequence of the preceding high F0 offset of 'koldt', is debatable). Position in the utterance cannot be made responsible for this 'undershoot' with six speakers, because extensive movements (fall-rises) are not otherwise confined to initial, or any other, position, as witnessed expressively by all of the preceding figures with the Bornholm speakers. Another possibility remains, namely that the less extensive movements in 'vand' (and maybe also in 'kat'?!) are an expression of a downgrading in prominence. In Thorsen (1987) I hypothesized for Copenhagen Danish that variations in the extent of F0 movement within the stress group might reflect variations in prominence, though keeping within the realm of what may be termed 'neutral' stress. Applied to the present utterances it would mean that the adjective and the noun have a 'stronger versus weaker' prominence relation, something which I can apply meaningfully to my auditory impressions of HP, HC, RK, and KP. I do not mean to imply that the syntactic relation as such is necessarily the decisive factor, it may just as well be a semantic/pragmatic effect. Here is very clearly a domain for further research, i.e. the syntactic and semantic/pragmatic regulation and the manifestation of varying degrees of 'neutral' prominence in Danish.

The four Stockholm and Malmö speakers are much less ambiguous, though a straight comparison across all five frames is rendered impossible by the differences in word accent, indicated below each tracing. With BjH we may compare 'kamrorna' with 'kall' and 'grå' (Accent I) and note that the slow rise in 'kamrorna' turns steep, but equally extensive, in 'käll, grå'. EJ's 'kamrorna' defy an immediate comparison, because it comes from the utterance 'De tog fram kamrorna till nyår'. (The low final syllable of 'kamrorna' may be due to a somewhat less prominent accent: ER often produces double sentence accents in context free utterances which will make the second of three stressed words comparatively weaker, cf. Table II end section III.A.2 (b). It could also be that the low termination of 'kamrorna' is a means to set off the onset of the fall in the succeeding accent II ('nyår').) The two Accent II words behave slightly
differently with BjH and ER, but it does seem as if the stretching out over one (or two) post-tonic syllables of the rise in Accent I is not paralleled by a similar expansion of the fall in Accent II, which is executed within the stressed syllable. (This is confirmed by figure 26 and 27.) The behaviour of 'mjölk' and 'katt' calls for the same line of comments as 'vand' and 'kat' with the Bornholm speakers, cf. above.

MD and HD from Malmö produce extensive Fo falls in all the Accent I words, regardless of position, except that MD de-stressed 'kall', cf. figure 55. Since, further, HD produced 'kamrorna' with Accent II, there is not much left for a comparison of Accent I falls, but from MD it would seem as if Accent I falls are contained within the stressed syllable (this is confirmed by figure 30 and 31), and within those limits, set by the stressed syllable, the slope of the fall varies with duration, compare 'kam-' with '(m)jölk' and 'katt'. (Actually, the succeeding figures as well as figures 19-31 are more revealing about Fo patterns and alignment, where the Swedish and Bornholm speakers are concerned.)

NRP and NT (figures 57-58) confirm previous investigations (Thorsen 1980a, 1982, 1983a) that the fall-rise-fall is truncated from the end when it is pressed for time, and that the low turning point remains stable, relative to vowel onset, usually coinciding with a point in time which corresponds with a short vowel offset. What remains in monosyllabic stress groups with short vowel is the fall. Note that the more extensive falls, or rather the lack of a brief rise in the sonorant consonant of 'koldt, vand' and the long vowel of 'grå' (which onsets with a rise, due to the initial consonant), can be ascribed to the presence of stød in these segments.

(b) Evidence from the long utterances

On page 45 I noted that the rise during '(søs)ter hedder' was less steep than during '(Tör)bens' with HP in figure 1. The same can be said for HC, KP, and CA (figures 2, 6, 7). The utterances depicted in figures 19-25 will give further substantiation to a claim that (unmarked) Fo patterns follow a falling-rising configuration, with a time and frequency constant fall followed by a rise which is constant in magnitude, but whose slope, consequently, needs to be regulated according to its duration. These utterances apparently induced different speakers to different "readings" which in its turn gave rise to differences in Fo patterning, however. Only HP, HC, CA and four items by IB have the falling-rising Fo patterns, which I presume are the unmarked ones. (Partly because they are general in the larger part of the material, partly because that is how they strike my ear, whereas the various reversed versions by JT, RK, KR and two items by IB sound more insistant or lecturing.) I assume that the discontinuities between stressed vowel offset and post-tonic onset in 'Thørsten', 'rutebilen' observed with HP, and in 'Thørsten' with CA and IB are due to the [s] and [tʰ], respectively. Compensation for this segmental effect (which is absent or a great deal weaker with HC)
would have made the onsets lower and thus the rises steeper, and, accordingly, we would have noted a rather straightforward inverse relation between rise-time and slope in these falling-rising Fo patterns. The same relation holds for IB's rising-falling patterns, i.e. the fall is steeper in the shorter post-tonic tails. It seems that a further regularity can be established at this point, namely that, for a given speaker, the fall and the rise cover approximately equal frequency intervals.

JT (figure 23) seems to have dodged the demand for pre-planning involved in the on-line production of HP, HC, CA, and IB, when he produced the five non-marginal stress groups with their falling stressed syllables succeeded by a skip up to the onset of high and roughly level post-tonics. RK replicates some of JT's stress groups (falling plus high level patterns) but also shares with KP some falling plus high-falling patterns, and KP in his turn has a couple of falling-rising patterns as well. I cannot ascertain that those high-falls that occur with KP (the second, third and fourth stress groups) and RK (the second stress group and possibly the third) are of equal magnitude with varying slopes. At this point I wish to call attention to the judgment, quoted on page 44, by a colleague who is thoroughly familiar with Bornholm, that HP, HC, CA, and IB sounded most natural and authentic and came closest to a spontaneous rendering of the material. Lack of spontaneity will probably make itself most markedly felt in these long utterances where, further, the degree of semantic predictability is next to nil, i.e. every lexical item is 'new', and thus I do not think that JT, RK and KP with these utterances invalidate a statement to the effect that, in Bornholm, falling-rising Fo patterns are preponderant in non-final stress groups which (1) are not subject to a focal sentence accent, and which (2) do immediately precede and (3) do not succeed such an accent (cf. section III.A.2(a) above). Final stress groups, stress groups under sentence accent, stress groups preceding and succeeding a sentence accent will be treated further below.

Stockholm and Malmö speakers (figures 26, 27, 30, 31) have entirely different strategies. The extensive Fo movements take place within the stressed syllables (Malmö: Accent I) or across the stressed and the first post-tonic syllable (Malmö: Accent II, Stockholm: Accent I and Accent II). Succeeding post-tonics take up and continue on the level where the stressed syllable or the first post-tonic lands them. Again, excepting stress groups (1) under and (2) succeeding a sentence accent, the execution of significant tonal events in both Malmö and Stockholm Swedish is restricted to one or a succession of two syllable(s), which limits the amount of pre-planning and look-ahead called for, although it does not obliterate it completely, cf. above (p. 118-119) about figures 52-56.

The Copenhagen speakers (figures 28 and 29) should be cleansed of a couple of segmental effects: the steep fall in NRP's '(Kö)feof og' is probably due to a combination of the initial
[ɛ] which increases the onset value in the post-tonic and the stød in [ɔ] which lowers the offset. The [ɔ] in 'Thørsen' may have increased the onset of the post-tonic there as well. Similar remarks, though the effect is weaker, could be made for NT's '(Kö)foed og'. That apart, it appears that the post-tonic slope is constant, and so is the timing of both low (turning point) and high (onset of post-tonic fall). NT's penultimate stress group is an apparent exception.

(c) Long stress groups

The question was raised in connection with the arrangement of the material, whether word boundaries are associated with any particular Fo configuration in Bornholm. It has been shown already for Standard Danish (Thorsen 1980a, 1982, 1984), Standard Swedish (Bruce 1977) and Skanian (Touati 1987) that the relevant unit for the patterning of Fo is the prosodic stress group, that is: a succession of a stressed plus all following unstressed syllables (if any), irrespective of intervening word or syntactic boundaries (within the same intonation contour, i.e. within the same phrase, clause or sentence). That is not to say that a speaker has no means of signalling word boundaries, if he so desires, and one speaker in my 1980a investigation actually did so. I suggested then that this may be an optional characteristic of rather distinct, though not necessarily slow, speech. The cuttings presented in figures 59-69 present a long stress group (six and five post-tonics, respectively) and the next stressed syllable which constitutes a separate word in one case ('snart') and the word final syllable in the other ('keramik'). There is - as expected - no indication in the Fo traces of the difference in word boundary location, and if it were only for that, a couple of these figures would have sufficed as examples. I have chosen to include them all (except the two Copenhageners - long stress groups in Standard Danish being the subject of a separate paper, Thorsen 1984a), because they add a feature to what has been said about timing in Bornholm stress groups and they confirm neatly the Stockholm and Malmö material described above.

The seven Bornholm speakers behave uniformly where 'sålde-fiskerne må' is concerned, i.e. they all produce a falling-rising type pattern. However, the low turning point is not coincident with the offset of the stressed syllable. The fall continues, and the offset is thus both lowered and transposed 'to the right' where it coincides with the offset of the second post-tonic. The fricative onset and offset of this syllable ('-fis-') may be partly responsible, i.e. with sonorant consonants we might have found a broad valley (reminiscent of 'kanerne', cf. figures 46-52) with a minimum near the middle of this second post-tonic. Apparently, stress group patterning is even more flexible than the material already described has shown: The fall may also be expanded in time, when the stress group is long enough. But there must be more to it than mere length, because '(Tu)risterne køber kera-' (with six post-tonics) does not exhibit the same trend, except for a slight
turning point delay with HC in figure 60. (Furthermore, speakers again form two groups: HP, HC, CA, and IB with fall-rises and JT, RK, and KP with rise-falls, cf. above. Like earlier cases, I will assume that JT's, RK's and KP's reversals are due to nuances in "reading" and I will not consider them any further here.) If environment is to be made responsible for the different alignment of segments and Fo in the two stress groups exhibited (by HP, HC, CA, IB) in figures 59-62, the reasoning would run as follows: 'risterne kober kera-' is the first stress group in the utterance, i.e. it is approached from below and the speaker's main concern must be to get high up in the range. HC, CA, and IB produce sentence intonation contours which do not reach the global maximum until the second stress group, i.e. they are still globally rising with the first one. Both facts might explain why the fall through the stressed syllable is not extended, or in other words, why the onset of the stress group rise is not delayed. The lower and later minimum in 'sildefiskerə må' would then be ascribed to its position within the intonation contour (a) where the mild declination towards the final stress group has already begun and (b) where it is being approached from above (from the higher post-tonic in 'sidste').

Stress group patterning is a great deal more variable than I had foreseen in Bornholm, both in terms of shaping and timing, and is clearly an area where further research is required. But certain mechanisms, which seem to be specific to Bornholm as against Standard Copenhagen, Malmö and Stockholm Swedish, appear clearly enough, namely the look-ahead demanding stretching and squeezing of Fo patterns associated with prosodic stress groups in unison with the durational specifications.

Figure 59
Figures 59 – 69

Average fundamental frequency tracings (logarithmic display) of two long stress groups plus the next stressed syllable by seven Bornholm, two Stockholm and two Malmö speakers. See further the legend to figures 1–7 and 10–13.
Figure 62

Figure 63
Figure 64

Figure 65
INTONATION ON BORNHOLM

Figure 68

Figure 69
2. Stress groups in final position and in connection with sentence accents

The focus here is the qualitative change in stress group patterning, i.e. the center of interest is the Bornholm speakers. (Copenhagen speakers have no sentence accents, and the manifestation of the scattered focal accents in Malmö as well as default and focal accents in Stockholm has been dealt with above and did not show any change in basic patterning or alignment with the segments.)

Final stress groups without sentence accent on terminal declarative intonation contours (figures 1-7, full line) invert the general, unmarked falling-rising (or low-high) pattern into a continuous fall (or a high-fall). This is exceptionless with four speakers (HP, HC, CA, JT). With RK it would be more correct to describe the final stress group pattern as a fall which levels out over the post-tonics. KP and IB do not change the basic fall-rise in final position in trisyllabic 'Svaneke' (figures 3 and 6, top), but tag a fall on to it (in the word final syllable). However, in the remainder of the utterances they do produce final stress groups without sentence accent with continuously falling Fo movements (or with a fall plus low level, in the manner of RK), and I will assume that falling final non-accented stress groups are the general feature.

Only two speakers, HC and IB, produced questions with non-terminal intonation contours, i.e. with a local final rise. This rise is performed in the post-tonics (in 'Svaneke'), i.e. the low turning point coincides with the offset of the stressed vowel, and in fact there is nothing to distinguish these final interrogative stress groups from the normal, unmarked edition of non-final stress groups. What makes them interrogative, then, is precisely the contrast to the falling final stress groups in terminal declaratives.

Final stress groups with (default and focal) sentence accent (figures 1-7, thin and heavy broken line) take a variety of shapes across speakers, and also affect the preceding part of the utterance in various ways, as was apparent from section III.A.2(a). The main trends can be summarized as follows for the present purpose: Note first of all that three speakers (CA, RK, KP) produced only focal accents finally, and that those default accents that HC produced have been left out of consideration for lack of uniformity, so the comparison between default and focal accents rests upon three speakers only (HP, IB, JT). - One speaker (KP) did not change the shape of his final stress group under focal accent either, it remains falling-rising, with an added fall for terminality, and in one case also a more extensive Fo movement, cf. figure 6. The consistent feature of his final SA is the tilting of the preceding global contour, but that is of no concern here. CA (figure 7) did alter the shape of his final stress groups into continuously falling ones, but shares with KP the lack of any other consistent signal for final focal accent apart
from the tilting of the preceding contour. HC (figure 2) presents a border line case between KP and CA and the remaining speakers. HC produces final focal accents which are rising-falling, though the rise is modest. Modest is also the twisting down of the tail end of the preceding sequence of unstressed syllables, two facts which may well be related (cf. below), and she also tilts the preceding contour. HP, IB, JT and RK (figures 1, 3, 4, 5) produced explicit rising-falling final accents (in contradistinction to their no-accent stress groups), where the fall is of greater extent than the rise, however. Simultaneously they produce very explicit and extensive lowering of the tail of the preceding stress group pattern. This lowering tends to be greater in the focal than in the default accent case with those three speakers who produced consistent default accents (HP, IB and JT), supporting the contention that default and focal accents are different both to their function and their phonetic shape. The high turning point is generally coincident with the offset of the stressed vowel (this fact is not apparent in the figures). In section III.A.2(a) I accounted for this modification of the preceding stress group as a way to highlight, render prominent, the final accent, and I see that as yet another confirmation of the plasticity of speech production. Of course, this phenomenon is also inconceivable without look-ahead and pre-planning in the execution of tonal events, because the shape of the pre-accentual stress group is sensitive to the nature of the upcoming event: if the final accent is of the high-fall type, no modification of the preceding unstressed syllables is required, they will automatically terminate higher than the onset of the final fall; but if the upcoming accent is of the rising-falling type, the preceding unstressed syllables will change the last part of their rising course into a falling one, so as to end up beneath the low onset of the accentual rise. It is also apparent that one and the same speaker may employ both strategies: HP produced default accents in the long utterance (figure 19) and in the question (which he pronounced with a declarative intonation - figure 33). These accents are of the high-fall type, and accordingly there is no modification of the preceding stress group pattern, which is cleanly rising.

Medial (focal) sentence accents (figures 1-7, mid - dotted line) appear in two shapes: HP, HC and KP have high-falling accents preceded by an unmodified low-high stress group pattern. IB, JT and RK have inverted, i.e. rising-falling, accents preceded by a stress group whose tail is twisted downwards, just like medial stress groups before final rising-falling accents. (With IB the preceding stress group pattern is completely deleted, actually, in a manner which is reminiscent of Copenhagen Danish stress groups surrounding an emphasis for contrast.) CA's signalling of the medial accent is very inconspicuous, cf. also p. 48. The high turning point in rising-falling medial accents generally coincides with the stressed vowel offset (not apparent in the figures). Since neutral final stress group patterns generally are high-falling, no qualitative change is apparent when they are preceded by a focal accent, but the final fall is lowered and/or diminished so as to smoothly continue the fall initiated in the preceding accented item.
Initial (focal) accents (figures 1-7, dotted-broken lines) come out with inverted, i.e. rising-falling F0 patterns, with HP, HC and IB, except that HC's 'Kamma' is (low)falling-(high) rising. With the remaining speakers it is the suppression of succeeding F0 patterns which is the most conspicuous feature.

To summarize all of this section (p. 103 ff): The production of stress group patterns in Bornholm stands out by its variability and great flexibility. This is possible because Bornholm does not have distinctive tonal word accents, as opposed to Malmö and Stockholm Swedish. The same fact probably also accounts for the difference in the domain over which compression of tonal patterns takes place: it encompasses all of the prosodic stress group in Bornholm, but only extends over the stressed, or the stressed and first post-tonic, syllable in Malmö and Stockholm (which is what motivates the designations "extensive" versus "slight" compressions in the schematic summary in section IV). It may well also be this latter feature which, more than anything else, makes Bornholm Danish so easily identifiable auditorily.

D. FINAL LENGTHENING

Due to the rather parenthetical nature of this part of the investigation, the present section will be restricted to a mere presentation of the facts. For a thorough treatment of segment duration as a function of context, including references to the existing literature, the reader is referred to Lindblom (1978) and Fischer-Jørgensen (1982). However, let me briefly summarize what is known about Stockholm, Skanian and Copenhagen. Final lengthening as such is an uncontested fact of Stockholm Swedish, although the explanation for it is debated, cf. Lyberg (1977) and Bannert (1982). The order of magnitude varies with the composition of the word, the lengthening of the vowel of monosyllables being greater than the first stressed vowel of di- and trisyllables, centering around 4-5 cs. (To my knowledge, there are no published data on the post-tonic syllables in polysyllabic words in Swedish.) Touati (1987) bases his observation that final lengthening is absent in Skanian upon measurements of word final stressed vowels, but adds a reservation (p. 162) that unaccented syllables might appear lengthened finally. Fischer-Jørgensen (1982) obtained values between 1.5 cs and 3.5 cs for short and long stressed vowels, respectively, in Danish, basing her observations upon measurement of a large number of speakers from a variety of regional language and dialect backgrounds, among them one Copenhagen, NRP.

I have measured each segment in 'Kamma', excluding the closure of the aspirated stop, though, which cannot be delimited in utterance initial position. I have measured groups of segments in 'rflfst/erne', as indicated by the slants. There are two major segmentation problems: intervocalic /r/ in 'turisterne', whether it be a uvular approximant-obstruent (as in Copenhagen, Bornholm and Malmö) or an apical continuant (as in Stockholm),
and then, of course, the utterance final vowels. The /r/-onset was determined where the intensity curves begin to drop from the preceding vowel. A few shady cases were left out of consideration. The final vowels are more cumbersome. They may terminate in strong or in weak creaky voice; in weak breathy voice or in weak unvoiced aspiration. The segmentation which offers the best uniformity across speakers and utterances is a vowel offset coinciding with the point in time where the high-pass filtered intensity curve reaches zero, which is accordingly the criterion adopted here. This corresponds physiologically to the point in time where the vibratory pattern of the vocal cords produces a source function with little energy in the upper part of the spectrum and where any energy below 500 Hz, which might be produced by weak creaky voice or by 'edge vibrations', is disregarded. An objection to the effect that this cuts back precisely that phase which may constitute the final lengthening is at least partially muted by the fact that the same procedure has been employed across all speakers and regional languages, but it did indeed lead to different results for the various groups. Correspondingly, the final vowel in initial words was offset at the point in time where the intensity of the noise of the succeeding fricative /f, s/ rises sharply ('Kamma stämmer fra...'/ 'Turisterne fordöbler ...'/ 'Turisterna förduddlar...'), or where the closure of succeeding /k/ has been formed ('Kamma kommer från ...'), i.e. where the intensity reaches zero.

The results are presented in table V, where the difference, in centiseconds, of the total duration of the (part of the) word in final minus initial position is given, with footnotes about the distribution of the lengthening in those cases where it is both statistically significant and considerable. Note that there are a number of negative values, i.e. instances where the initial item was longer than the final item, ceteris paribus.

There are scattered examples of significant, though slight, lengthenings finally in Bornholm, but there are more cases where the initial item was considerably and significantly longer than the final one, a difference which is either distributed all over the stress group (IB), or mainly due to the final vowel (JT, RK). If anything, finality is signalled in Bornholm through an accelerated speech tempo, and there are no grounds for positing a feature 'final lengthening' in Bornholm Danish.

Conversely in Stockholm where the positive differences in duration are fairly considerable and highly significant. Particularly with ER, which may be due to her style of speech, cf. above about her phrase-final Fo rises. Both speakers produced default sentence accents on final 'turisterna' which had to be omitted here. The lengthening is distributed approximately evenly over all the segments with BjH, whereas it affects the final vowel most with ER.
Table V

Differences of duration, in centiseconds, of (parts of) words in utterance final minus initial position, under various conditions of prominence: no sentence accent (Kåmma, (tu) risterne), reduced prominence due to a sentence accent located elsewhere (Kå'mma), sentence accent (invited by the context, Kåmma). Many blanks in the table are due to prominence conditions not being met in one or both positions. Seven Bornholm speakers, two Stockholm speakers, two Malmö speakers, and two Copenhagener. Differences that are statistically significant (student's one-tailed t-test) are indicated with one, two, or three stars, corresponding to levels of probability of 0.05, 0.005, and 0.0005, respectively.

<table>
<thead>
<tr>
<th></th>
<th>Kåmma</th>
<th>K'(z) mma</th>
<th>K+ Kåmma</th>
<th>(tu) risterne</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP</td>
<td>-0.8</td>
<td>-1.9</td>
<td>-1.3</td>
<td>1.8</td>
</tr>
<tr>
<td>HC</td>
<td>B</td>
<td>2.3*</td>
<td></td>
<td>1.8</td>
</tr>
<tr>
<td>CA</td>
<td>O</td>
<td>1.3</td>
<td></td>
<td>-2.5*</td>
</tr>
<tr>
<td>IB</td>
<td>N</td>
<td>-8.6**1</td>
<td>-6.3*1</td>
<td></td>
</tr>
<tr>
<td>JT</td>
<td>O</td>
<td>-11.3***6</td>
<td>-7.5***6</td>
<td>-0.9</td>
</tr>
<tr>
<td>RK</td>
<td>L</td>
<td>-7.6***6</td>
<td></td>
<td>-3.0</td>
</tr>
<tr>
<td>KP</td>
<td>N</td>
<td>3.2*</td>
<td>3.2**</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.3</td>
</tr>
<tr>
<td>BJH</td>
<td>STOCK-</td>
<td>5.5***8</td>
<td>4.8***8</td>
<td></td>
</tr>
<tr>
<td>ER</td>
<td>HOLM</td>
<td>12.0***2</td>
<td>9.7***2</td>
<td></td>
</tr>
<tr>
<td>MD</td>
<td>MÅL-</td>
<td>-0.5</td>
<td>-2.0*</td>
<td></td>
</tr>
<tr>
<td>HD</td>
<td>MÅL-</td>
<td>7.0***8</td>
<td></td>
<td>9.8**7</td>
</tr>
<tr>
<td>NRP</td>
<td>COPEN-</td>
<td>6.2***5</td>
<td></td>
<td>9.0***</td>
</tr>
<tr>
<td>NT</td>
<td>HAGEN</td>
<td>4.5***4</td>
<td></td>
<td>5.7***</td>
</tr>
</tbody>
</table>

1) all segments are shortened to approximately the same degree
2) the final vowel is lengthened most
3) the posttonic segments carry the major part of the lengthening; there are only three items behind the averages, but there was no overlapping of measurements in the two positions
4) the lengthening is due to the stressed vowel
5) [m] is lengthened most
6) the posttonic vowel is shortened most
7) the posttonic segments carry the major part of the lengthening.
8) all segments are lengthened to approximately the same degree
One Malmö speaker, MD, teams up with the Bornholm speakers, whereas HD has considerable and significant lengthenings finally, which attack either all of the segments, or mainly the post-tonic ones. Note that MD was also the one who never produced any sentence accents, be they default or focal. One is left to wonder whether these are general prosodic options in Malmö or whether either MD or HD forms an exception to an otherwise uniform prosodic system.

Eli Fischer-Jørgensen has very kindly lent me her raw data on NRP. In the comparable part of her material, namely disyllables of the /'CVCa/ type, the final words are longer than the non-final ones by between 10.4 and 12.2 cs, which corresponds to around 30%, with the word final vowel carrying most of this difference (being lengthened between 4.2 and 7.8 cs), the stressed vowel coming second (being lengthened between 1.2 and 3.4 cs). These values are somewhat higher than what I have obtained (which may, at least partly, be due to different segmentation criteria).

I have been very surprised to find these high values with the Copenhagen speakers. I would have been less surprised if we had come out with small and insignificant final lengthenings, because it has been my (auditory) impression that this is one (among many) point(s) where Copenhagen Danish and Stockholm Swedish sound decidedly different. It may well be that I have suffered from an illusion or a misconception and have associated the final lengthening of Stockholm with the final default accent, which Copenhagen lacks and which may render the final lengthening less prominent perceptually.

IV. SUMMARY

The results have been compared across regions and discussed in each section above. The schema below is only intended to facilitate a direct comparison of the parameters investigated (plus one: word tones).

<table>
<thead>
<tr>
<th></th>
<th>Copenhagen</th>
<th>Malmö</th>
<th>Bornholm</th>
<th>Stockholm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sentence Intonation</td>
<td>globally</td>
<td>globally</td>
<td>locally</td>
<td>locally</td>
</tr>
<tr>
<td>IS SIGNALLED</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Default Sentence Accent</td>
<td>no</td>
<td>no</td>
<td>optional</td>
<td>obligatory</td>
</tr>
<tr>
<td>Focal Sentence Accent</td>
<td>no</td>
<td>optional (not frequent)</td>
<td>optional (frequent)</td>
<td>obligatory</td>
</tr>
<tr>
<td>Final Lengthening</td>
<td>yes</td>
<td>optional?</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Compression or Truncation</td>
<td>truncation</td>
<td>slight compression</td>
<td>extensive compression</td>
<td>slight compression</td>
</tr>
<tr>
<td>Word tones or Standard</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>
It is immediately apparent that the prosodic system of Bornholm is as opposed to Copenhagen as can be. The two do not share one single prosodic feature. At the level of the sentence or utterance, we may actually posit a pairwise closer similarity between Copenhagen and Malmö, and between Bornholm and Stockholm, respectively, keeping in mind that though focal sentence accents are optional in both Malmö and Bornholm, they are considerably more frequent in Bornholm.

There are grounds for some speculation here. At the outset, one might have thought that (partial) compression of tonal patterns was a consequence of the presence of phonologically distinct tonal word accents; that the discrimination and identification of significant tonal events stipulated a full tonal development, regardless of the brevity of segmental material to carry it. But then the compression found in Bornholm would not be justified, unless, of course, that is what is left, the last trace, of a long forgotten word tone opposition. This is rather far-fetched, however: It is generally assumed that most of the Scandinavian area developed a prosodic distinction at the word level some time during the first half of the millennium, cf. Fischer-Jørgensen (1987) and Gärden (1977), but it is uncertain whether those areas at the periphery (southern Jutland, the southern Danish islands), which today have no tonal and no stød distinction, ever had one, or whether they are true relic areas. Secondly, it is equally possible for the tonal distinction to have developed from a stød one, as vice versa. Thus, the compressed tonal patterns in Bornholm can only be historically motivated if tonal patterns developed first (and then fed the development into stød in some areas), and if these patterns originally developed in all of Scandinavia, including the fringes. - However, there is a much more down-to-earth and concrete reason to disbelieve any imprint from a former tonal word accent distinction in Bornholm, namely what may be termed the expansion beyond the limits of the word boundary if more unstressed syllables succeed. That is, in Malmö and Stockholm the tonal movements are not expanded beyond the first post-tonic syllable in the stress group, and post-tonics after that run level (high or low, where ever the stressed syllable or the first post-tonic takes them). In Bornholm the (predominantly rising) movements are stretched out over the whole stress group, irrespective of its length. This probably has to go down as a peculiarity of Bornholm prosody, one which gives Bornholm its very characteristic "sound".

The final lengthening is also distributed in a curious manner: Bornholm and Stockholm sentence prosody being so similar, I would have expected them to share this feature (but note that my prejudice would also have denied Copenhagen any appreciable final lengthening). This is a matter that deserves more looking into, but if the results withstand further challenges, then final lengthening is clearly a completely independent parameter and in no way principally linked to the occurrence of extensive tonal movements (in the shape of final default sentence accents), as also maintained by Bannert (1982), nor is it a "universal" feature.
The distribution of sentence accents across the four regions and their realization might motivate a speculation that the manifestation of sentence intonation is linked to the presence (and manifestation) of final default sentence accents. Not in any insoluble, one-to-one relation, though, because local sentence intonation appears also in utterances produced without final default accents (in Bornholm). But it is not unlikely that globally distributed sentence intonation, i.e. a rather gentle overall slope, would be masked perceptually by the extensive final movements pertaining to the default accent, so sentence intonation signals need to be contained within or tagged on to the tonal movement of the default accent. This strategy is generalized, it becomes the way to render sentence intonation, also in the occasional absence of a default accent. The hypothesis would state that global intonation precludes final default accents (which leaves the possibility of having local sentence intonation without default accents).

V. NOTES

(1) In the following, 'Standard Danish' and 'Standard Swedish' will mostly be abbreviated 'Danish' and 'Swedish', respectively.

(2) References will be given in the results and discussion sections.

(3) Stød may be described as a kind of creaky voice which can occur in certain syllable structures in Danish. Although its presence is largely morphologically and phonologically determined it has a distinctive function in surface phonological forms. Presence versus absence of stød corresponds roughly to the Swedish tonal word accent I versus II distinction. See further Basbøll (1985) and Gårding (1977).

(4) BJH and ER both protested that the original version 'De tog kamrorna fram till nyår.' was ill-formed, so 'De tog fram kamrorna till nyår.' was added to the six cards, and both versions were read by the four (Swedish and Skanian) speakers.

ACKNOWLEDGEMENTS

I very gratefully acknowledge the assistance rendered me by the seven Bornholm speakers: Carsten Andersen, Ivar Bach, Hanne Christoffersen, Rita Kofoed, Kjeld Pedersen, Hans Poulsen and Jens Thorn. Special thanks to Preben Holm who let me use his studio, and most of all to Karl Kristensen, who went out of his way to arrange the contact for me with all the speakers. I am of course also grateful to colleagues and students who served as speakers for me in Sweden: Hans Dahlbäck, Mats Dufberg, Björn Hammarberg, Elisabeth Rosengren, and to Gösta Bruce who was kind enough to arrange and supervise the recording of Hans Dahlbäck in the department of Linguistics and Phonetics at Lund University, and who spent the
better part of a day discussing parts of the manuscript with me. Thanks also to Inger Karlsson who helped me translate the material into Swedish, and to Eli Fischer-Jørgensen who lent me some of her raw data on final lengthening in Danish. I am further grateful for the competent assistance with measurements and graphics work rendered me by Niels Dyhr and Jeanette Holte- se. Finally, I have profited very much from the active interest in the investigation offered me by Mogens Baumann Larsen, Aalborg University, who took it upon himself to listen to and comment the first twenty items recorded by each Bornholm speaker.

Last but not least, thanks to Else Parkmann for her flawless typing and ever vigilant proof-reader's eye.

REFERENCES

Areskoug, H. 1957: Studier över sydöstskånska folkmål, (Glee- rup, Lund)

Bannert, R. 1982: "An Fo-dependent model for segment dura- tions?", Reports from the Institute of Linguistics, Uppsala University 8, p. 59-80

Bruce, G. 1977: "Swedish word accents in sentence perspective", Travaux de l'Institut de Linguistique de Lund 12, p. 1-155

Gårding, E. 1978: *Satsintonation i svenska*, *Bidrag till Elfte sammenkomst för svenskans beskrivning*

Gårding, E. 1986: "How many intonation models are there in Lund?", *Reports from Uppsala University, Linguistics Department*

Lyberg, B. 1977: "Some observations on the timing of Swedish utterances", *J. Phonetics* 5, p. 49-59

Lyberg, B. 1979: "Final lengthening - partly a consequence of restrictions on the speed of fundamental frequency change?", *J. Phonetics* 7, p. 187-196

Thorsen, N. 1980a: "Word boundaries and Fo patterns in Advanced Standard Copenhagen Danish", *Phonetica* 37, p. 121-133

Thorsen, N. 1982: "On the variability in Fo patterning and the function of Fo timing in languages where pitch cues stress", *Phonetica* 39, p. 302-316

Thorsen, N. 1984: "Fo timing in Danish word perception", *Phonetica* 41, p. 17-30

Thorsen, N. 1984a: "Variability and invariance in Danish stress group patterns", *Phonetica* 41, p. 88-102

